Evolution from nuclear starbursts to discs and tori in Active Galactic Nuclei

> Marc Schartmann, Andreas Burkert, Martin Krause, Richard Davies, Klaus Meisenheimer, Max Camenzind, Konrad Tristram

What drives the growth of black holes?

July 26, 2010, Durham

1. Introduction

Seyfert activity

- otherwise normal spiral galaxies light up, when enough gas is accreted onto the centre
 core luminosity comparable to stars of whole
- core luminosity comparable to stars of whole galaxy

Unified Scheme of Active Galactic Nuclei

central black hole
 (10⁶ to 10¹⁰ M₁)

- accretion disc
- obscuring torus
- (hidden) broad line region
- narrow line region

Idea: better understand the distribution of gas and dust near galactic nuclei

1. Introduction

Seyfert activity

otherwise normal spiral galaxies light up, when enough gas is accreted onto the centre
core luminosity comparable to stars of whole

galaxy

central black hole
 (10⁶ to 10¹⁰ M_X)

- accretion disc
- obscuring torus
- (hidden) broad line region
- narrow line region

Idea: better understand the distribution of gas and dust near galactic nuclei

2. Motivation

- torus morphology revealed by MIDI
- find two-component structure

3. Radiative transfer modelling

- infer dust morphology
- parameter study for various clumping parameters in a toy model
- simultaneously account for high spatial resolution data as well as visibility information

good idea of structural properties of tori

3. Radiative transfer modelling

- infer dust morphology
- parameter study for various clumping parameters in a toy model
- simultaneously account for high spatial resolution data as well as visibility information

good idea of structural properties of tori

However:

- Where does the gas come from?
- How are tori stabilised against gravity?
- What governs the dynamics of tori?

Hydrodynamical torus models needed, which produce similar gas morphologies

4. Effects of an evolving nuclear star cluster: Observations

- r < 0.5" stars spheroid, gas thin disc
- r > 0.5": kinematics of gas and stars similar, dispersion dominated

• recent SF (> few 100 Myr), short-lived • AGN switched on 50-100 Myr after starburst **40pc** 80pc 120pc 0pc 200 -0S(1) velocity & velocity (km/s) 150 stellar dispersion 100 dispersion velocity 50

1.0

radius (arcsec)

OS(1) dispersion

1.5

Davies et al. 2007

2.0

realise with hydrodynamical simulations

0.0

0.5

5. Global strategy

- Sample of nearby Seyfert galaxies, for which SINFONI & MIDI observations are available
- hydrodynamical simulations combine large and small scale observations
- MIDI Large Program 184.B-0832 and SINFONI proposal for P86

6. 3D Hydrodynamical simulations with PLUTO

Torus build-up and BH feeding in NGC 1068

- start after violent SN II phase, following short-duration star-burst, which built up central star cluster
- then AGB stars with slow winds main mass contributors:
 - discrete mass input
 - velocity (rotation plus random) from emitting star
 - mass loss rate (Jungwiert et al. 2001):

$$\dot{M}(t)_{\rm n} = \frac{5.55 \cdot 10^{-2}}{t + 5.04 \cdot 10^6 \,\rm{yr}}$$

 $= 9 \cdot 10^{-10} \, M_{sun} \, yr^{-1} \, M_{sun}^{-1}$

- effective cooling curve
- solved with PLUTO -code (Mignone et al. 2007)

Schartmann et al. 2009 & 2010

6. 3D Hydrodynamical simulations with PLUTO

disc extent: 0.5 to 1pc
maser disc in NGC 1068: 0.65 to 1.1pc (Greenhill & Gwinn 1997)

angular momentum distribution of gas coming into centre seems to be reasonable

- However: outer torus component in equilibrium (<2.5pc), but mass pile up in nuclear disc
 - accretion & star formation physics not included
 - very computationally extensive, only short time evolution possible

idea: 1D effective disc model for nuclear disc

7. 1D effective disc simulations: the model

- mass infall onto the disc from 3D hydro models
- time dependence from Jungwiert et al. 2001
- use angular momentum of mass inflow to derive radial position in a Keplerian disc

calculate viscous evolution with mass input source term and SF sink term.

$$\frac{\partial}{\partial t}\Sigma(t,R) + \frac{1}{R}\frac{\partial}{\partial R} \left[\frac{\frac{\partial}{\partial R} \left(v\Sigma(t,R)R^{3}\Omega'(R) \right)}{\frac{d}{dR} \left(R^{2}\Omega\right)} \right] = \dot{\Sigma}_{input}(t,R) - \dot{\Sigma}_{SF}(t,R)$$
Lin & Pringle, 1987

compare resulting disc properties (mass, size, ...) to observations

7. 1D effective disc simulations: disc mass

alpha viscosity value unclear:

observations of fully ionised discs: 0.1 to 0.4 (King 2007)

alpha parameter study

• Models reproducing maser observations:

~10⁶ M_{sun} in clumpy disc model (Kumar 1999)

• observations of the CND in the Galactic centre: 1.3-10⁶ M_{sun} in molecular mass (Montero-Castano et al. 2009)

7. 1D effective disc simulations: disc structure

surface density of the disc

HWHM=0.85 pc dust disc

common radial structure from MIDI observations (blue dashed lines, Kishimoto et al. 2009) 0.7 pc HWHM of hot component

7. 1D effective disc simulations: current mass accretion rate

acc.rate @2.5pc (250Myr): 0.03 M_{sun}/yr

3·10⁻³ to 3·10⁻² M_{sun}/yr onto centre (?)

observations of Seyfert galaxies: 10^{-3} to 10^{-2} M_{sun}/yr (Jogee, 2006)

bolometric luminosity:
$$L_{bol} \approx 9.4 \cdot 10^{10} \left(\frac{f_{refl}}{0.01}\right)^{-1} \left(\frac{D}{14.4 Mpc}\right)^2 L_{\odot} \approx 3.6 \cdot 10^{44} \frac{erg}{s}$$

Pier et al. 1994

assuming 100% reaches the BH: L_{bol} = 1.8·10⁴⁴ erg/s (in Schartmann et al. 2005, L_{bol} = 2.1·10⁴⁴ erg/s gives a good adaptation to highres. data)

- accretion from nuclear disc might be clumpy as e.g. observed in Galactic Centre (Montero-Castano et al. 2009)
- additional inflow?/outflow (scales)?

8. Outlook: effects of continuum radiation pressure

- accretion flow triggers central activity
- investigate radiation feedback on the gas inflow
- inner torus not modelled

assume obscuration profile

8. Outlook: effects of continuum radiation pressure

- accretion flow triggers central activity
- investigate radiation feedback on the gas inflow
- inner torus not modelled

assume obscuration profile

9. Conclusions

- * observations (e.g. MIDI, SINFONI) directly show geometrically thick gas and dust structures in Seyfert cores
- dust radiative transfer models give us good idea of parameter dependencies, effect of clumpiness, shape of dust distribution, simultaneous agreement with highres SEDs & MIDI
- investigations of effects of evolving nuclear star cluster with hydrodynamical models yield two-component structure
- * feed mass inflow into 1D disc simulations, in order to check obscuration and feeding properties on small scale as well as dynamics
- * good agreement with observation
- * evolving nuclear star cluster important mechanism for feeding nuclear discs and nuclear activity