Co-evolving AGN activity and star formation within the zCOSMOS density field

John Silverman Institute for the Physics and Mathematics of the Universe (IPMU) University of Tokyo

& z/XMM COSMOS teams

- Major mergers of galaxies
- Internal processes
 - Bar/disk instabilities (Kormendy & Kennicutt 2004)
 - Stellar ejecta
 (e.g., Davies et al. 2007; Kauffmann et al. 2009)

***** Availability of gas

 Plentiful reservoir of molecular gas on large (kpc) scales (Scoville et al. 2003; Ho et al. 2008)

*** External processes**

(>100 kpc scales; ram pressure stripping,

strangulation, galaxy harrassment)

Galaxy evolution up to z ~ 1

SDSS

Mass and environment are fundamental parameters

(e.g.,Baldry et al. 2004; Cooper et al. 2010; Thomas et al. 2009; Peng et al. 2010)

Establish the relationship between AGNs and their environment

Tools:zCOSMOS 20k spectroscopic redshift surveyX-ray imaging with XMM-Newton

zCOSMOS: spectroscopic redshift survey with VLT

PI: Simon Lilly (ETH-Zurich)

6(+1) primary groups: Zurich, Marseille, Toulouse, Milan, Bologna, MPE/ESO, + Tokyo

O. Le Fevre, G. Zamorani, M. Scodeggio, V. Mainieri, T. Contini, A.Iovino & full zCOSMOS

zCOSMOS: bright program

- 20k spectra
- I.7 sq. deg.
- flux-limited (i < 22.5)
 5500-9700 Å

- random sampling (70%)
- 90% redshift success rate
 - 0.| < z < |.2

XMM/COSMOS

PI: G. Hasinger

M. Brusa N. Cappelluti, A. Finoguenov (MPE), A. Comastri, R. Gilli (INAF-Bologna), V. Mainieri (ESO) and the entire XMM and Chandra COSMOS team

Hasinger et al. 2007; Cappelluti et al. 2009

 $f_{0.5\text{-}2.0 \text{ keV}} > 5 \text{ x } 10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (Soft band)}$ $f_{2.0\text{-}10 \text{ keV}} > 2 \text{ x} 10^{-15} \quad \text{``} \quad \text{``} \quad \text{(Hard bard)}$

261 AGNs (0.1 < z <1) identified by zCOSMOS/10k having $L_X > 10^{42}$ erg s⁻¹

Host galaxy stellar masses

In agreement with clustering analyses (e.g. Gilli et al. 2009) local SDSS studies (Kauffmann et al. 2003; Best et al. 2005)

Star formation rates

[OII]λ3727 as a SFR indicator (Ho et al. 2005)

- [OII] mainly attributed to host galaxy (see Croom et al. 2002)
- Quasars exhibit low SFRs (a few M_☉ yr⁻¹). Quenching at low redshift?

Method:

I. Measure line fluxes [OII] λ 3727, [OIII] λ 5007

- II. Removal of AGN contribution; assume
 - [OIII] λ 5007 purely AGN dominated
 - [OII]_{AGN}/[OIII]_{AGN}=0.2 (Kim, Ho et al. 2006)
 - Consider extinction
 - At z>0.85, infer L_[OIII] from L_{2-10 keV} (Heckman et al. 2005)

```
III. SFR = f(L_{[OII]}) (Moustakis et al. 2006)
```


JDS et al. 2009b

Star formation rates

Significant levels of star formation: $\sim I < SFRs < 100 M_{\odot} yr^{-1}$

Similar to studies covering a wide range of redshift (e.g., Kauffmann et al. 2003; Jahnke et al. 2004)

Are AGNs associated with transitional galaxies?

SDSS: Martin et al. 2007; Salim et al. 2007; Schawinski et al. 2007; Westoby et al. 2007 X-ray surveys: see Nandra et al. 2007; Silverman et al. 2008; Georgakakis et al. 2008; Schawinski et al. 2009

Must account for the low mass-to-light ratio of 'blue cloud' galaxies

JDS et al. 2009b; Xue et al. 2010

- Constant ratio with redshift
- $<\dot{M}_{accr}/SFR > \sim 10^{-2}$ [A factor of 10x higher than M_{BH}-M_{bulge} relation]
- Intermittant scenario with an AGN duty cycle 10x shorter than star formation

JDS et al. 2009b

Zurich-developed density estimator

Kovac et al. 2009

- Nearest neighbor approach (e.g., 5th, 10th)
- spectroscopic (10k) + photometric (30k) redshifts
- flux and volume limited tracers

- Overdensity (δ): 1 + $\delta = \rho / \langle \rho \rangle$
- Physical scale: 1-3 Mpc

AGNs in zCOSMOS 10k spectroscopic catalog 42.5 < log Lx < 43.7

JDS, Kovac, Knobel, Lilly et al. 2009a

AGNs in zCOSMOS 10k spectroscopic catalog $42.5 < \log Lx < 43.7$

JDS, Kovac, Knobel, Lilly et al. 2009a

AGNs in zCOSMOS 10k spectroscopic catalog 42.5 < log Lx < 43.7

JDS, Kovac, Knobel, Lilly et al. 2009a

AGNs in zCOSMOS 10k spectroscopic catalog

JDS, Kovac, Knobel, Lilly et al. 2009a

AGNs in zCOSMOS 10k spectroscopic catalog

Identification using both friends-of-friends and Voronoi-Delaunay-method

Knobel et al. 2009

- 1681 groups with 5102 members
- 577 groups with 3 or more members (> 85% completeness; >80% purity)
- $10^{12} < M_{halo} < 10^{14} \ M_{\odot}$

(see also Finoguenov et al. 2007; Leauthaud et al. 2010)

Identification using both friends-of-friends and Voronoi-Delaunay-method

Knobel et al. 2009

Stay tuned for an extension to massive clusters (P. Martini's talk)

Massive, star forming galaxies are more likely to host AGN

Mutual decline in star formation and supermassive black hole accretion

 shifts the evidence for co-evolution scenario to smaller physical scales (i.e., within the same galaxies)

Environmental quenching in denser environments

- similar to the impact on star formation
- Iower levels of AGN activity in galaxy groups
- black hole growth may be suppressed in satellite galaxies

Open issues: role of galaxy mergers, luminous quasars, relation to the radio-loud population

Chandra imaging of galaxy groups in Zurich ENvironmental Survey

ZENS (PI M. Carollo, A. Cibinel, F. Miniati: ETH-Zurich):

Study of galaxy evolution in 2dF groups (Eke et al. 2004)

- ESO large program: optical imaging of 185 groups @ z~0.05
 - $10^{12} < M_{halo} < 10^{14} M_{\odot}$
- Chandra imaging (Cycle 11; PI: JDS) of 12 groups w/ >6 members
 - AGNs with Lx>10⁴¹ erg s⁻¹ (10 ks per group)
 - Radio coverage (NVSS and FIRST)

XMM-Newton followup (PI: F. Miniati-ETH)

Carollo et al. 2010, Cibinel et al. 2010, in preparation

Chandra imaging of galaxy groups in Zurich ENvironment Survey <u>ZENS (PI M. Carollo: ETH-Zurich)</u>: Study of galaxy evolution in 2dF groups (Eke et al. 2004)

XMM-Newton followup (PI: F. Miniati-ETH)

Carollo et al. 2010, Cibinel et al. 2010, in preparation