Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars

Ezequiel Treister (IfA, Hawaii), P. Natarajan (Yale), D. Sanders (IfA), C.M. Urry, K. Schawinski (Yale), J. Kartaltepe (NOAO)

Abstract

Despite observed strong correlations between central supermassive black holes (SMBHs) and star-formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3, and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represent two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily-obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH and coeval star formation.

The Model

We propose a simple scenario in which every obscured quasar is triggered by the gas-rich merger of two massive galaxies. This can be converted into a equation describing the evolution of the ratio of obscured to unobscured quasars as follows:

Figure 1: Space density of heavily-obscured AGN as a function of redshift. *Filled triangles* show the measurements of Treister et al. (2009). *Squares*: space density from the work of Tozzi et al. (2006). *Star*: Measurement by Alexander et al. (2008). *Pentagons*: Values reported by Fiore et al. 2009. *Solid lines* show the expected space density of Compton thick AGN from the luminosity function of Della Ceca et al. (2008). *Red symbols* show measurements and expectations for $L_X > 10^{43}$ erg/s sources, while the *blue symbols* are for $L_X > 10^{44}$ erg/s. The new measurements seem to indicate as strong increase in the number of high-luminosity heavily-obscured sources at z > 2.

The redshift evolution of each of these terms can be independently constrained observationally:

- $d^2merger/dtdN$ is the major merger frequency per galaxy per unit time. We use the parametrization of this fraction given by Hopkins et al. (2009), which was obtained from models constrained by observations.

- $N_{gal}(>M_{min}(z))$ corresponds to the space density of massive galaxies, with M_{min} being the minimum mass for ULIRGs, as determined by Kartaltepe et al. (2010) from observations in the COSMOS field. N_{gal} was then obtained from the stellar mass function of Marchesini et al. (2009).

- Rather than directly estimate the gas content of high redshift galaxies, which is currently observationally impossible at these redshifts, we used the average star formation rate as a proxy for the fraction f_{gas} of gas-rich galaxies.

- The space density of unobscured quasars, N_{unobsc} has been measured by both X-ray (e.g., Hasinger et al. 2005) and optical (e.g., Richards et al. 2006) surveys, and consistent results are found with these two methods.

 $-\Delta t$ (the time required to convert an obscured quasar into an unobscured one) can be determined as a free parameter. The redshift dependence of each of these components is shown below.

Merging galaxies

Figure 2: Redshift evolution for the model components described above. Each component was individually normalized to its value at z=0.

Obscured Quasars Evolution

RESULTS

We found a steep increase in the number of heavily-obscured (Compton-thick) quasars at z>2.
This increase is consistent with a simple model in which quasars are triggered by the gas-rich merger of two massive galaxies. The resulting quasar is originally heavily-obscured but after ~100 Myrs it becomes unobscured.
Given the intrinsic luminosities and the duration of this phase, it is possible for a quasar to build

of this phase, it is possible for a quasar to build most or all of the black hole mass in a single event. • The integrated black holes growth in the obscured quasar phase is $1.3 \times 10^5 M_0 Mpc^{-3}$, or ~30% of the total black hole mass density at z=0.

Host Galaxy Morphologies

Figure 3: The ratio of heavily-obscured to unobscured quasars as a function of redshift. Measurements of the space density of obscured quasars at high redshift were obtained from X-ray - *green triangles*; Tozzi et al. (2006) - and mid-IR imaging - *blue pentagon*; Fiore et al. (2009) and *black squares*; Treister et al. (2009) - and spectroscopy - *brown circle*; Alexander et al. (2008) - selection techniques. For the $z\sim0$ measurement we used the luminosity function of local Ultraluminous IR galaxies (ULIRGs; Kim & Sanders 1998), assuming that each ULIRG is either a heavily-obscured or an unobscured quasar. The *solid black line* shows the heavily-obscured to unobscured quasar ratio expected from AGN luminosity functions derived from hard X-ray observations (Della Ceca et al. 2008). The *red solid line* corresponds to the ratio obtained if every gas-rich major merger of two massive galaxies generates a heavily-obscured quasar, which after a time $\Delta t=96$ Myrs becomes unobscured. *Dashed lines* show the uncertainty in this relation, at the 90% confidence level.

References

Alexander et al. 2008, ApJ, 687, 835. Della Ceca et al. 2008, A&A, 487, 119. Fiore et al. 2009, ApJ, 693, 447. Gandhi et al. 2009, A&A, 502, 457. Hasinger et al. 2005, A&A, 441, 417. Hopkins et al. 2009, arXiv:0906.5357. Kartaltepe et al. 2010, ApJ, 709, 572. Kim & Sanders 1998, ApJS, 119, 41. Marchesini et al. 2009, 701, 1765. Richards et al. 2006, AJ, 131, 2766 Tozzi et al. 2006, A&A, 451, 457. Treister et al. 2009a, ApJ, 706, 535. **Figure 4**: Examples of strongly-interacting/merging galaxies containing a heavily obscured growing supermassive black hole observed by the Hubble Space Telescope. The top panels show examples in the nearby Universe, while the bottom panel show galaxies at $z\sim$ 1-2. For the first 10-100 Myrs after the merger, the growing black hole remains highly obscured, after which it becomes an optically bright quasar that shines again for another 10-100 Myrs before it likely

reaches its upper limit.