Growing the first black holes

Marta Volonteri

University of Michigan

B. Devecchi, S. Van Wassenhove

M. Begelman, P. Natarajan

Early Universe Galaxies and black holes form

Timeline of the Universe

Newborn Galaxies Newborn Galaxies

Image credit: NASA/JPL-Caltech

M_{BH}- host relationships : co- evolution of MBHs and galaxies

I.Forming MBHs

II. Growing MBHs

Colpi et al 2007

HOW can you make the first

massive black holes?

 $M_{BH} \sim 100 M_{sun}$

 $M_{BH} \sim 10^3 \text{--} 10^5 \ M_{sun}$

PopIII stars remnants

(Madau & Rees 2001, MV, Haardt & Madau 2003)

Simulations suggest that the first stars are massive M~100-600 M_{sun} (e.g., Abel et al. Bromm et al.)

Metal free dying stars with M>260M_{sun} leave remnant BHs with $M_{seed} \ge 100M_{sun}$ (Fryer, Woosley & Heger)

For a BH accreting at a rate f_{Edd} the time required to reach a final mass scales as:

$$t_{growth} = 0.45 \text{ Gyr} \frac{\varepsilon}{1 - \varepsilon} f_{Edd} \ln(\frac{M_{fin}}{M_{in}})$$

HOW can you make the first

massive black holes?

 $M_{BH} {\sim} 100 \ M_{sun}$

PopIII stars remnants

(Madau & Rees 2001, MV, Haardt & Madau 2003)

Simulations suggest that the first stars are massive M~100-600 M_{sun} (e.g., Abel et al. Bromm et al.)

Metal free dying stars with M>260M_{sun} leave remnant BHs with $M_{seed} \ge 100M_{sun}$ (Fryer, Woosley & Heger) $M_{BH} \sim 10^3 \text{--} 10^5 \ M_{sun}$

DIRECT COLLAPSE:

Gas-dynamical processes

(e.g. Haehnelt & Rees 1993, Eisenstein & Loeb 1995, Bromm & Loeb 2003, Koushiappas et al. 2004, Begelman, MV & Rees 2006, Lodato & Natarajan 2006)

Stellar dynamical processes

(Devecchi & MV 2009, Omukai et al. 2009)

Gas-dynamical processes Need high inflow rates ~ I M_{sun}/yr (Begelman 2010) → highly unstable systems, eg merger driven gas collapse (Mayer et al 2010, Begelman & MV 2010)

Biased MBH formation: from the HIGHEST PEAKS OF DENSITY FLUCTUATIONS down

MV & Begelman 2010

Mass function of seed MBHs

(MV, Lodato & Natarajan 2008; Devecchi & MV 2009)

109 108 107 $M_{\rm BH}(\rm M_{\odot})$ 106 10^{5} 104 1000 100 10⁹ 108 וווש ביושר ביווש 107 (M_{\odot}) 106 M_{BH} 105 104 1000 100 5 15 10 \mathbf{z}

Since the "average" MBH grows by several orders of magnitude by accretion at $z \le 3-5$ the initial conditions are washed out: looking for uncontaminated clues

Journey to the M-sigma relation

'Standard' mergerdriven accretion
=>each episode grows
a MBH onto the Msigma relation

MBHs move onto the M-sigma from below

Journey to the M-sigma relation (MV & Natarajan 2009)

The smallest galaxies retain memory of the initial conditions: quiet life.... no major mergers, no accretion

Occupation fraction and MBH-O 2 Z=0 (MV, Lodato & Natarajan 2008)

MBHs in Milky Way Satellites (Van Wassenhove, MV, Walker & Gair 2010)

Gas-dynamical collapse PopIII remnants Triangles: the MBH sits on the M- σ relationship

Dots: fixed MBH mass, $10^5~M_{\odot}$

GWs from MBH binaries

space based interferometer: LISA Joint NASA/ESA mission

 10^{4} ε_{rd}=1%, j=0.8 10^{3} $\frac{3}{5}$ 10² z=10 10^{1} 10⁰ . 10³ 10⁵ 10⁶ 10⁷ 10^{4} M^{0}

MBHs M~ 10^5 Msun can be detected up to z=15-20

GWs from MBH binaries

with Cutler, Berti & the LISAPE taskforce

PopIII remnants

Direct collapse

	Model	N	$f_{\rm yr^{-1}}$	$f_{10\%D_L}$	$f_{10 deg^2}$	$f_{10{ m deg^2},10\%{ m D_L}}$	$f_{1 deg^2}$	$f_{1\mathrm{deg^2},1\%\mathrm{D_L}}$
-	SE	80	0.41(0.32)	0.62(0.32)	0.25 (0.060)	0.24(0.044)	0.068	0.051
	\mathbf{SC}	75	0.45(0.35)	$0.51 \ (0.17)$	0.18(0.014)	0.16(0.014)	0.039	0.037
	LE	24	0.97(0.92)	0.89(0.35)	0.43 (0.035)	0.42(0.030)	0.096	0.054
	LC	22	0.95(0.86)	0.69(0.23)	$0.31 \ (0.028)$	$0.26\ (0.025)$	0.085	0.047

seed MBHs in biased proto-galaxies

Big or small?

Iook back at the earliest times – before accretion erases initial conditions

today MBHs @ low masses tell the story