

Issues with SED analysis

- Frequency coverage
- Variability
- Aperture corrections
- Stellar contribution
- Reddening optical/UV
- Photo-electric absorption X-rays

v.Brief History of SED fitting...

Mon. Not. R. Astron. Soc. 000, 000-000 (0000) Printed 15 July 2009 (MN LATEX style file v2.2)

Optical-to-X-ray emission in low-absorption AGN: Results from the Swift-BAT 9 month catalogue

R. V. Vasudevan¹ R. F. Mushotzky², L. M. Winter³ and A.C. Fabian¹ ¹Institute of Astronomy, Madingley Road, Cambridge CB3 0HA ²Laboratory for High Energy Astrophysics, NASA/GSFC, Greenbelt, MD 20771, USA ³Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, 440 UCB, Boulder, CO 80309-0440, USA

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 21 October 2008 (MN IATEX style file v2.2)

Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM-Newton: spectral energy distributions for the reverberation mapped sample

R.V. Vasudevan^{1*} and A.C. Fabian¹ ¹ Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

v.Brief History of SED fitting...

Our AGN Sample (51 objects) Jin et al. (in prep.)

- Cross correlation between 2XMMi and SDSS DR7
- z < 0.4 (to get H alpha in range, so can estimate reddening)
- FWHM 600 km/s 12,000 km/s
- More than 2,000 counts in one of the XMM cameras

Plug for a Poster... (larger sample) Sarah Hutton et al. (in prep.)

- Cross correlation between 2XMMi and SDSS DR7
- z < 0.4 (to get H alpha in range, so can estimate reddening)
- FWHM 600 km/s 12,000 km/s

X-ray column densities

Typical object in our sample

Devil's in the detail...

Correction for the Balmer Continuum

The Fell Spectrum

Correction for Fell Emission

Aperture Corrections (OM)

Three Components of the X-ray SED

- The Multicolour disc
- Compton component
- Power Law (with low E cut-off)

Includes conservation of energy, between disc, Compton comp. and power law...

The three component model location and geometry

Sample Summary

BH Mass and L(Edd)

Quantifying the X-ray Components: Te of Compton Component

KUG1034+398 (only AGN with detected QPO)

Stellar Contamination – Landt et al. (in prep.)

Diversity of the SEDs – disk component

Diversity of SEDs – Compton component

Diversity of SEDs – power law component

Diversity of soft X-ray excesses

RE1034 Mkn766

- REJ1034 has huge SX and not much variability below 2keV
- Mkn766 looks less like true excess and varies tremendously below 2keV

Edd. Ratio vs. H beta FWHM

PL index vs. H beta FWHM

Optical emission lines vs. X-ray Comp.

[OIII] line vs. X-rays (above I.P.)

Correlation coeff. vs X-ray energy

The future...

- Complete component vs emission line analysis
- Variability studies using Pan-STARRS
- Extend the SEDs into the near-IR, to better determine the stellar component, and quantify the hot dust (torus?) contribution

AGN Variability: Pan-STARRS

POS-1 Camera FoV

	1				
		Sec.			

The future....(stellar comp. Landt et al.)

Conclusions

- in the absence of complete simultaneous frequency coverage, application of all significant corrections should be applied
- this will help reveal if/how the multiemission line components are related to the multiple continuum components
- regular monitoring will enable high and low states to be investigated in the same AGN