

Observatoire astronomique de Strasbourg

Automated search for dwarf galaxies with latest Pan-STARRS data: Boötes I

Benjamin Laevens

Supervisors: N. Martin (MPIA/Unistra) and H-W Rix (MPIA)

9 January 2013

Presentation Overview

- Introduction
- Background
- Procedure
- Results
- Future Work and Improvements
- Summary and Conclusion

- Overview of work
- Set up code and mathematical framework for automated search of dwarf galaxies
- Use Boötes I dwarf galaxy \rightarrow I=358.1 and b=69.6

Automated search for dwarf galaxies with latest Pan-STARRS data: Boötes I

- Follow Koposov et al. (2008) for dwarf galaxy detection
- $\bullet~\mathsf{Aim}? \to \mathsf{Identify}$ excess number of stars \Rightarrow satellite galaxy
- $\bullet~\mbox{How}? \rightarrow \mbox{Convolution of objects' spatial distribution with a filter or kernel}$
- Need differential image map \Rightarrow Identify the overdensities \rightarrow Differential image map is difference of two convolutions, with different σ

 Differential image map: difference between local density/signal (σ₁) and local background/noise (σ₂)

 $\rightarrow \sigma_1$ chosen in function of size of the targeted dwarf galaxy (code must be run for several values to get the ideal σ)

 $\rightarrow \sigma_2$ must be suitably large (10 σ_1) to see the background effects

Results

Improvements/Future Wor

Summary and Conclusion

Additional effects to consider

- Distinction between stars and galaxies?
 - \rightarrow Use N. Martin's star-galaxy separator (see talk)
 - \rightarrow Each object is assigned a probability ranging between 1 and 0.
- PS1: lots of holes

 → Take this spatial completeness into account

Can see the effects of including the star/galaxy probability

Stellar Density Plot (with star/galaxy probability)

Background Summary

For the mathematics enthusiasts, this leads to the following expression to be evaluated:

$$n_{excess}(l, b) = \frac{\sum_{i=1}^{N_{*nearby}} \frac{w_{+}(l-l_{i}, b-b_{i}) * p_{*,i}}{\int_{l'} \int_{b'} \frac{c_{tot}(l', b') w_{+} dl' db'}{c_{tot}(l', b') w_{+} dl' db'}} + \frac{\sum_{i=1}^{N_{*nearby}} \frac{w_{-}(l-l_{i}, b-b_{i}) * p_{*,i}}{\int_{l'} \int_{b'} \frac{c_{tot}(l', b') w_{-} dl' db'}{c_{tot}(l', b') w_{-} dl' db'}}$$

or:
$$n_{excess} = \frac{\text{convolution positive gaussian}}{\text{normalisation factor}} - \frac{\text{convolution negative gaussian}}{\text{normalisation factor}}$$

where:

 w_+ and w_- : kernels (Gaussians) with σ_1 and σ_2 respectively l and b: galactic longitude and latitude c_{tot} : spatial completeness $p_{*,i}$: star/galaxy probability

- Impose some colour criteria (Koposov et al. 2008)
 → g r < 1.2, g < 23 and r < 22.5
- Minimise code running time:
 - ightarrow Calculate convolution with contribution of stars within 3 σ
- Use 2 arcmin pixels
- For the completeness normalisation, use 0.5 arcmin pixels (so 16 of these correspond to 1 pixel in the convolution) \rightarrow Again only consider the contribution of pixels within 3σ

Improvements/Future Wo

Different parts of the excess density expression

Automated search for dwarf galaxies with latest Pan-STARRS data: Boötes I

Final Differential Image Map

Putting the images of the two previous slides together gives:

Automated search for dwarf galaxies with latest Pan-STARRS data: Boötes I

Improvements

Things that weren't taken into account (but which should be):

• Dust

 \rightarrow This influences the colour cut and will eliminate and add objects.

• Signal to Noise

 \rightarrow Know Boötes I is centred at (0, 0), because set up that way

 \rightarrow There could be other 'blobs' which you are inclined to think are satellites

 \rightarrow Need to make S/N map \Rightarrow Determine significance of over densities

Future Work

Future plans include:

- Incorporating elements from the previous slide
- Running the code on the entire sky
 - \rightarrow See how easily recover SDSS satellites in PS1
 - \rightarrow Run code on southern hemisphere
 - \rightarrow See if find anything new
 - \rightarrow Run code for whole stacked data and compare to current data

 \rightarrow Based on time taken to run code for 10 $\textit{arcmin}^2,$ estimate all of PS1 should take one week

Summary and Conclusion

- Developed a code to identify Satellite Galaxies
 → Set this up using Boötes I
- Showed using the differential Image Maps that over densities are found

 \rightarrow Took into account spatial completeness as well as star/galaxy probability

- Further tweaks need to be made
 - \rightarrow Experimenting with different values of σ_1
 - \rightarrow Add in dust effects as well as making S/N maps
- Can now run the code on entire PS1 sky