Photometric Redshift, Stellar Mass and Star Formation Rate from MDS data

Lihwai Lin (ASIAA) & Seb Foucaud (NTNU)

With the help of: Jean Coupon, Chin-Wei Chen (ASIAA) & Hung-Yu Jian (NTU)

KP12-TW team

OUTLINE

- Photometric redshifts in MDS
- Physical parameters
- SFR stellar mass relation

Photoz codes

- Importance of getting good photozs
- Two family of codes:
 - Template fitting (SED)
 - Algorithm training/Machine learning (Empirical)
 - Supervised (need a training set)
 - Unsupervised (don't need any training set)
- All methods requires good photometry
 - ZP corrections ("fine tuning" see Ilbert et al. 2006)
- Good spectroscopic sample (large and representative)
 - For SED: template training ("fine tuning" see Ilbert again)
 - For Supervised Empirical: training set!!
 - For all: performance tests
- More in the discussion part? (Jim Heasley, IfA)

Catalogs and photoz

- Stacks MIT, catalogs Sextracted
- Photoz computed with EAZY (Brammer et al. 2008)
- Prior on redshift distribution at given i-band mag. from SAM (Guo et al. 2011)
- ZP corrections applied (weak for *grizy*, large for *u*)
- Different set of templates: PEGASE13 (SSP), CFHTLS (empirical)
- Different seeing: *grizy* >1", *u* <0.9" (PSF matching?)
- Magnitude used: ISO_MAG_i-AUTO_MAG_i=corr

-u: MAG_AUTO

Depths of MD stacks

	g	r	i	z	У	UCFHT
MD03 _{IPP_GR}	25.060±0.141	24.919±0.116	24.735±0.154	24.186±0.132	22.844±0.209	N/A
(exptime/s)	(14376)	(15097)	(27840)	(27480)	(25200)	
MD03 _{Seb_pre}	24.704±0.087	24.719±0.079	24.644±0.067	24.148±0.096	22.642±0.132	On Going
(exptime/s)	()	()	()	()	()	
MD04 _{IPP_pre}	25.035±0.197	24.808±0.173	24.649±0.142	24.178±0.148	22.749±0.190	N/A
(exptime/s)	(15944)	(15113)	(25920)	(25440)	(16140)	
MD04 _{IPP_GR}	25.069±0.239	24.944±0.145	24.684±0.165	24.346±0.123	22.759±0.237	N/A
(exptime/s)	(16719)	(17144)	(22080)	(26160)	(19920)	
MD04 _{Seb_pre}	24.875±0.067	24.743±0.080	24.611±0.068	24.045±0.086	22.205±0.110	26.091±0.544
(exptime/s)	(18080)	(17741)	(28800)	(25440)	(7680)	(191597)
MD05 _{IPP_GR}	25.045±0.168	24.870±0.147	24.706±0.173	24.143±0.181	22.842±0.194	N/A
(exptime/s)	(18297)	(14381)	(25920)	(26400)	(25320)	
MD05 _{Seb_pre}	24.603±0.090	24.554±0.085	24.425±0.080	23.694±0.093	22.346±0.110	On Going
(exptime/s)	(11752)	(11752)	(21120)	(11520)	(13440)	
MD06 _{IPP_GR}	25.081±0.190	24.870±0.147	24.706±0.173	24.143±0.181	22.842±0.194	N/A
(exptime/s)	(14383)	(14381)	(25920)	(26400)	(25320)	
MD06 _{Seb_pre}	24.698±0.117	24.736±0.073	24.753±0.101	24.095±0.074	22.926±0.114	On Going
(exptime/s)	(13447)	(14351)	(42000)	(25200)	(27840)	
MD07 _{IPP_GR}	25.014±0.259	24.853±0.208	24.710±0.209	24.193±0.159	22.797±0.196	N/A
(exptime/s)	(18700)	(16610)	(30240)	(30240)	(27300)	
MD07 _{Seb_pre} (exptime/s)	24.982±0.166 (20792)	24.846±0.098 (19888)	24.812±0.099 (48000)	24.308±0.077 (45360)	23.103±0.126 (36480)	25.595±0.299 (142527) 25.678±0.273 (131064)
MD10 _{IPP_GR}	24.872±0.096	24.636±0.138	24.563±0.159	23.938±0.092	22.603±0.162	N/A
(exptime/s)	(8948)	(8588)	(18000)	(17280)	(15120)	
MD10 _{Seb_pre}	24.612±0.092	24.590±0.096	24.667±0.095	24.076 ±0.071	22.483±0.101	25.496±0.132
(exptime/s)	()	()	()	()	()	()

Seeing of MD stacks

	g	r	i	z	У	UCFHT
MD03ipp_gr (b/a)	1.02±0.04 (0.94±0.01)	0.95±0.04	0.91±0.03	0.84±0.03	0.90 ±0.04	N/A
MD03 _{Seb_pre} (b/a)	1.19±0.04 (0.96±0.01)	1.03±0.04	1.02±0.04	0.92±0.04	1.09 ±0.04	On Going
MD04 _{IPP_pre} (b/a)	1.10±0.06 (0.95±0.01)	1.03±0.04	1.01±0.07	0.95±0.04	0.90 ±0.07	N/A
MD04 _{IPP_GR} (b/a)	1.06±0.04 (0.95±0.01)	0.98±0.04	0.92±0.04	0.92±0.04	0.93 ±0.04	N/A
MD04 _{Seb_pre} (b/a)	1.20±0.04 (0.97±0.01)	1.08±0.04	1.02±0.06	1.01±0.03	1.08 ±0.06	0.85 ±0.04
MD05 _{IPP_GR} (b/a)	1.10±0.06 (0.96±0.01)	1.03±0.04	0.93±0.03	0.87±0.03	0.90 ±0.04	N/A
MD05 _{Seb_pre} (b/a)	1.20±0.04 (0.96±0.01)	1.07±0.04	1.08±0.04	0.91±0.04	1.21 ±0.07	On Going
MD06 _{IPP_GR} (b/a)	1.07±0.04 (0.96±0.01)	0.98±0.04	0.90±0.04	0.87±0.04	0.85 ±0.04	N/A
MD06 _{Seb_pre} (b/a)	1.18±0.09 (0.96±0.01)	1.05±0.06	1.03±0.03	0.95±0.04	1.02 ±0.04	On Going
MD07 _{IPP_GR} (b/a)	1.07±0.04 (0.95±0.01)	0.97±0.04	0.93±0.04	0.90±0.06	0.82 ±0.07	N/A
MD07 _{Seb_pre} (b/a)	1.13±0.04 (0.96±0.01)	1.01±0.06	1.08±0.04	1.02±0.03	0.95 ±0.04	0.88 ±0.10 0.86 ±0.10
MD10 _{IPP_GR} (b/a)	1.09±0.06 (0.96±0.01)	1.01±0.04	0.89±0.03	0.88±0.03	0.84 ±0.04	N/A
MD10 _{Seb_pre} (b/a)	1.21±0.06 (0.96±0.01)	1.06±0.04	1.04±0.06	1.05±0.04	0.84 ±0.06	0.78 ±0.06

Photoz in MD04 and MD07

Depth:

26.2(u) 24.9(g) 24.9(r) 24.8(i) 24.2(z) 22.3(y)

25.7(u) 25.0(g) 24.8(r) 24.8(i) 24.3(z) 23.1(y)

PSF matching and seeing improvement (MD04-g)

Skycell	Seeing cut	# frame	seeing	depth
065	None	20	1.27±0.11	24.99±0.03
	1.6"	15	1.15±0.07	24.92±0.04
	1.4"	10	1.13±0.09	24.67±0.05
066	None	20	1.24±0.08	24.93±0.05
	1.4"	15	1.18±0.10	24.84±0.06
	1.2"	11	1.12±0.06	24.57±0.04
077	None	20	1.26±0.07	24.93±0.03
	1.6"	14	1.19±0.09	24.84±0.04
	1.4"	11	1.15±0.06	24.56±0.02
078	None	20	1.19±0.04	24.94±0.02
	1.4"	15	1.12±0.06	24.71±0.02
	1.2"	10	1.06±0.07	24.57±0.03

Photoz test in MD07 (mr < 24)

Template	Magnitude System	σ/(1+z)	Outlier
Pegase13	Auto mag	0.057	11.7%
Pegase13	lso mag	0.055	8.9%
CFHTLS	lso mag	0.051	7.2%
CFHTLS (PSF matched U-band)	lso mag	0.051	6.1%

EAZY vs LePhare (with Jean Coupon's effort)

- Both utilizing CFHTLS templates (with minor differences)
- Different priors
- LePhare yields slightly better performance

Catalogs and photoz

- bias≈0.001, σ_z≈0.06 and η≈7% (comparison with DEEP2)
- u-band help in reducing interlopers by a factor 2 and to get correct photozs at z<0.4
- Priors help reducing interlopers by a factor 5!
- Photometry corrections for ZP
- Correcting seeing effect: ISO_MAG corrections good enough, but PSF matching would be ideal!
- Template fine tuning play a small role as well
- Lots of fine tuning required!

Stellar mass measurement

SFR – Stellar mass Relation from PS1/MD

(Stellar mass, SFR) derived from SED fitting with broad band photometry

- Limited by model / parameter space sampling (tau, age)
- Alternatives:
 - UV flux scaling → sensitive to dust
- From z~2 to z~0.5, SFR dropped by about 1 order of magnitude

Field vs Group

- Field galaxies:
 - More concentrated main sequence
 - Less massive members

- Group galaxies (identified with Hung-Yu's PFOF):
 - More massive members
 - More low SFR members
 - Less clear main sequence

SFR vs IR luminosity

SFR is underestimated for the dust-obscured population !

Conclusion

- With the addition of the u-band in the MD fields, the photoz accuracy is ~ 0.06 in $\sigma_z/(1+z)$ with 7% outliers at r<24.
- CFHTLS templates by far yield best results.
- The improvement from the PSF matched u-band is limited.
- The optical-based stellar mass agrees with the K-band stellar mass within 0.25 dex
- The SFR and stellar mass measurements from the SED fitting are limited by the grid resolution
- The field environment yields more concentrated star-forming main sequence than the group environment.
- More during the discussion...

Discussion: Added-Value catalog

Multiband photometry, Photometric Redshifts, Stellar Masses, Star Formation Rates, name it... and Database

Seb Foucaud (NTNU)

With the help of: Peder Norberg (Durham), Roberto Saglia (MPE)

List of things to discuss

- Multiband photometry:
 - How to match?
 - Forced photometry
 - Where to store info?
- Spectroscopic sample (archives)
 - Matching and storage
- Star galaxy separation
 - Several methods
 - pdf?
- Photometric redshifts
 - Several codes
 - PanZ (PSPS); APZ (TWEA-DC); other codes somewhere else?
 - pdz

List of things to discuss

- Other measurements from SED fitting (stellar masses, star-formation rates, ages etc.)
 - SED fitting
 - Centralized storage?
- Other information?
 - Galfit?

Some resolutions

- Photometric redshifts
 - Jim Heasly very keen in setting up a photoz WG, I agreed but I have not been very responsive lately (sorry!)
 - Using alternative methods
 - Matching them?
 - Probability distribution is the key!
 - related measurements (M*, SFR …)
 - I am planning to organize a "Photoz techniques workshop" in Summer 2013 in Taiwan, I let you know.
- Added value database
 - Not PSPS-bis!
 - Similar that the SDSS-NYU added value catalog!
 - Coordinating and merging efforts! Lots done by PCS, we should use this as well!
 - One database, potential mirrors? (TWEA-DC)

