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SNe la from three large surveys

= Dark energy

— Understanding (measuring) the
accelerating universe

=» Supernova physics
— SN la progenitors
— Understanding SN la explosions

— Ultimately understanding
limitations of the SN la method

=» Supernova Legacy Survey

— 7>0.1, mostly Type la
Supernovae

— Dark energy

CFHT

=» Palomar Transient Factory
— Local universe
— All transient types
— SN la physics

= PESSTO
- New ESO public survey

- Spectroscopy of all
transients
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More 8m-class time than CFHT
time — implications for planning of
future surveys... see DES talk!




la: SNLS3

Supernova Legacy Survey 3-year
sample

Nearly 500 SNe la (250 from SNLS)

No survey can provide SNe across the entire redshift range
Guy et al. 2010

Combining data from different surveys presents significant

. : Conley et al. 2011
calibration challenges

Sullivan et al. 2011




- w=-1.061£0.069

SNLS3:
Systematic
uncertainties
were

approximately
half the total

error budget

Most of this
was
“photometric
calibration”

Consistent with w=-1 when combined with BAO/
WMAP results Guy et al. 2010

Conley et al. 2011

But — nearly 2o tension with more recent Planck EEEHIVEYEERIEE



Which systematics are the most important (SN only)?

Description Qm w Rel. Area
Stat only 0.19*%%8 —0.90%% 1% 1
: 0.17
All systematics 0.18 =0.10 —0.9175%, 1.85
R 0.095 0.17
0.086 0.16
SN model 0.195%; 501 —0.9075 5, 1.02
: i 0.084 0.16
Peculiar velocities 0.1975 500 —0.91%;5, 1.03
ot 0.084 0.16
Malmgquist bias 0.198%; 500 —0.91%; 5, 1.07
Non-Ia contamination 0. 191%91% —0.90*:%_1260 1
MW extinction correction 0. 196“:%918()% —0.90’1%.1260 1.05
: 0.088 0.15
Host relation 0.198+0.98 —0.91*%2° 1.08

In the current published results, systematics from photometric
calibration completely dominates
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Joint SNLS+SDSS
sample

Importance of calibration led to a
revised calibration effort in 2012

Joint SNLS-SDSS analysis

SNLS/SDSS observe in similar griz
filters, and can observe the same
calibrating stars

(SNLS SN sample is the same as in
the SNLS3 papers)

[ Betoule et al. in prep ]




What’s changed since SNLS3?

 New calibration to HST spectrophotometric standards (“calspec”)
— Calibrated into this system at 0.4%
e Correction of instrumental effects e.g.
— Filter aging
— Improved flat-fielding (precise to 0.003mag)
— PSF size variation (with colour, flux, etc.)

e Correction of sign error in construction of tertiary standards...

Summary of zeropoint changes since SNLS3 (SNLS3-r):

_Band | g | r | iz

Acyis (Mag) -0.0129 -0.0009 0.0013 -0.0179

Guy et al.
goeﬁoa SNLS,3 +0.006 +0.006 +0.008 +0.019
uncertalnty

| Betoule etal. 2013 |
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New SNLS/SDSS calibration
. Band | g | r | i | 2z

Aeys (Mag)  -0.0129  -0.0009  0.0013

J nSeer’Ez?nty +0.006 +0.006 +0.008
[ | | | |
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lowz

SDSS SNLS 7 < 0.7 SNLS z > 0.7 HST

-0.0179

+0.019

Dominated by the
uncertainty on the
HST calibration

| Betoule etal. 2013 |




Cosmological constraints (Q,,)

Preliminary
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[ Betoule et al. in prep ]
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About H,

These cosmological results come from a comparison of
distant and nearby SN fluxes

SNe alone do not measure H, — an absolute distance scale
must first be set

e.g. using MASER distances and propagating to SN hosts
using Cepheids. These have their own systematics

None of this SNLS/SDSS recalibration is going to affect the
Cepheid+SN la H, measurement



SN la cosmology current summary

SNLS3+SDSS joint calibration

— Significant improvement on SNLS3 calibration

— Differences are within the SNLS3 uncertainties (except g’)
— Shift e.g. Q,, by 1-0

— No tension with Planck

— No tension with w=-1; total 5.6% uncertainty

‘SNLS5’ to come — 425 versus 250 SNLS3 SNe
Improved low-redshift samples (PTF, SkyMapper)

Dark Energy Survey: 3500 SNe la should replace SNLS
— (next talk)



Log Number of SNe per year

Number of SNe discovered per year
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Astrophysics of SNe la

How does the SN la progenitor influence the explosion?

What are the progenitors of SNe la and what can we learn from observations?

White-dwarf/white-dwarf
“merger” (double degenerate; DD)

Accretion from a non-degenerate
companion (single degenerate; SD)
Accretes from a wind (symbiotic channel)?
Roche Lobe over-flow?
Helium star channel?




How does this progenitor diversity map into the

cosmology?
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[ Kelly et al., Sullivan et al., Lampeitl et al., etc. ]




SN 2011fe

Transient located by PTF on night
of August 239 (Palomar)

Found in M101 — ~6Mpc

[ Nugent et al. 2011 ]




No progenitor (companion) star detected in HST imaging

Other complementary studies also place severe limits on SD
scenarios

| Lietal2011 |




But some SNe la show strong evidence for
circumstellar material

Wind from WD ¥ f p
companion ™ ¥ / o
— \ . I Circumstellar

material (CSM)

Traditional view: CSM / Can see spectral signatures of this material:
is the smoking gun of a
single degenerate
progenitor system * Narrow emission (e.g., H)

4y « Narrow absorption (e.g., Na, Ca)



An extreme case: PTF11kx

Normal SN la
spectrum

Additional, strong
signatures of CSM -
hydrogen, calcium,
sodium, etc.

Hydrogen means a
single degenerate
progenitor (probably)

| Dilday etal. 2012 |
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Strong CSM: “la-CSM”

Search of SNe lIn — SNe
with narrow hydrogen
emission

Search for underlying SN
la spectra

16 members of the class
with strong CSM

All located in star-
forming galaxies

All brighter than normal
SNe la (presumably

interaction)

Number of Objects

141

Silverman et al. 2013
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Weaker CSM

) Blueshifted SNe la

= 22.7%
e
8
s
E
Patatetal. =2

(2007)
22.7%
Redshifted
CallK
s o0 s 100 '1éo' = Sternberg et al. (2011)

Restframe Heliocentric Velocity v;, (km s~7)

®* Some SNe la show variable, blue-shifted CSM (Patat et al 2007)

®* Majority of SNe la in spirals show blue-shifted Na | D lines: outflow
from progenitor system?



Host galaxy properties

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

- Blueshifted (17)
6  No blueshifted (5)

\\\\\

E SO Sab  Sbc Sc/Scd Irr/Dwarf
Galaxy type
Na | (CSM) features more common in star forming galaxies

Less/No CSM in elliptical galaxies

[ Maguire, Sullivan et al. 2013 }




Link to progenitors?
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SNe la displaying blueshifted CSM have (on average)
higher stretches: brighter SNe

[ Maguire, Sull ivan et al . 2013 }




Higher stretch means younger progenitor
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Two families of ‘normal’ SNe la?

Family 1 Family 2




Two families of ‘normal’ SNe la?

Family 1 Family 2

] More luminous Less luminous
J Broader light curves Narrower light curves
(High stretch, low Am15) (Low stretch, high Am15)

Photometri
properties




Two families of ‘normal’ SNe la?

Family 1 Family 2

, More luminous Less luminous
Photometric : :
L properﬁesJ Broader light curves Narrower light curves
(High stretch, low Am15) (Low stretch, high Am15)

Spectral Weaker Si features Stronger Si features
properties | | Stronger high-velocity features | Weaker high-velocity features




Photometri
properties
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Spectral
properties

|

Host
properties
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Two families of ‘normal’ SNe la?

Family 1 Family 2

More luminous
Broader light curves
(High stretch, low Am15)

Less luminous
Narrower light curves
(Low stretch, high Am15)

Weaker Si features
Stronger high-velocity features

Stronger Si features
Weaker high-velocity features

Low stellar-mass
Younger, higher specific-SFR
(Lower metallicity)

High stellar-mass
Older, low specific-SFR
(Higher metallicity)
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Two families of ‘normal’ SNe la?

Family 1 Family 2

More luminous
Broader light curves
(High stretch, low Am15)

Less luminous
Narrower light curves
(Low stretch, high Am15)

Weaker Si features
Stronger high-velocity features

Stronger Si features
Weaker high-velocity features

Low stellar-mass
Younger, higher specific-SFR
(Lower metallicity)

High stellar-mass
Older, low specific-SFR
(Higher metallicity)

Younger progenitors

Older progenitors




Two families of ‘normal’ SNe la?

Family 1 Family 2

, More luminous Less luminous
Photometric : :
L properﬁesl Broader light curves Narrower light curves
(High stretch, low Am15) (Low stretch, high Am15)
Spectral Weaker Si features Stronger Si features
properties | | Stronger high-velocity features | Weaker high-velocity features

C host | Low stellar-mass High stellar-mass
oroperties Younger, higher specific-SFR Older, low specific-SFR

: “ L tallicity) (Higher metallicity)

- i (Lower me y g y
Delay-time _ .
Distribution Younger progenitors Older progenitors

o J

‘Environment || [a-CSM/Blueshifted CSM? Less/No CSM?

S~

[ Different progenitor types? 1




