The unbearable lightness of being: CDMS versus XENON

Christopher M^cCabe

with Mads T. Frandsen, Felix Kahlhoefer, Subir Sarkar and Kai Schmidt-Hoberg

Ripples in the Cosmos, Durham – 22nd July 2013

Searches for (WIMP) dark matter

Indirect detection

 $\chi \longrightarrow f$

Collider production

 χ

• Direct detection

 $\int_{f}^{\chi} \int_{f}^{\chi} \int_{f}^{\chi}$

Direct detection

Direct detection

Direct detection

Roadmap for this talk

• Summary of direct detection experimental results: focus on XENON10, XENON100 and CDMS-Si

- Compare CDMS-Si and XENON10/XENON100:
 - 1. under the standard theoretical assumptions
 - 2. beyond the standard theoretical assumptions

Latest results

XENON100: 1207.5988

Latest results: low mass region

• Focus on CDMS-Si, XENON10 and XENON100 in this talk

CDMS-Si

CDMS-II: 1304.4279

- 140 kg-days (July 2007- Sept 2008) with silicon detectors
- Previous CDMS results used germanium detectors

- Three events passed all cuts (0.7 expected)
- DM + background hypothesis preferred over known-background only hypothesis at 99.8% C.L.

XENON100

XENON100: PRL, 1207.5988

XENON10 (S2-only)

- XENON10 analysed 12-day run (from 2006) with S2-only:
- Pro: Energy threshold of S2 is significantly lower than S1
- Con: Lose electronic/nuclear recoil discrimination (23 events in the signal region)

XENON10 (S2-only) limit

XENON10: PRL, 1104.3088

• Published XENON10 limit in PRL paper:

• Our analysis did not agree:

XENON10 (S2-only) limit

XENON10: PRL, 1104.3088

- Published XENON10 limit in PRL paper
- Erratum with corrected limit agrees with our analysis:

• Our analysis did not agree:

Sarkar, CM, Schmidt-Hoberg: 1304.6066

Summary of experimental results

Frandsen, Kahlhoefer, Sarkar, CM, Schmidt-Hoberg: 1304.6066

 Small region of compatibility between CDMS-Si signal and XENON10 and XENON100 limits

Confronting experiment with theory

• Rate for spin-independent scattering:

$$\frac{dR}{dE_{\rm R}} = \text{flux} \cdot \frac{d\sigma}{dE_{\rm R}}$$
where $\text{flux} = \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}} vf(v) d^3 v$, $\frac{d\sigma}{dE_{\rm R}} = A^2 \frac{m_N \sigma_n}{2\mu_{n\chi}^2 v^2}$
 $v_{\min} = \sqrt{\frac{m_N E_{\rm R}}{2\mu_N}}$: minimum DM speed for nucleus to recoil with energy

- Standard theoretical assumptions:
 - 1. 'Standard Halo Model'
 - 2. Short range interaction
 - 3. Equal couplings to protons and neutrons
 - 4. Elastic scattering

Standard Halo Model

Truncated Maxwell-Boltzmann velocity distribution (in Galactic frame):

- Canonical values are $v_0 = 220 \text{ kms}^{-1}$ and $v_{\text{esc}} = 544 \text{ kms}^{-1}$
- Typical ranges are: $200 \text{ kms}^{-1} \lesssim v_0 \lesssim 250 \text{ kms}^{-1}$ McMillan, Binney: 0907.4685 $498 \text{ kms}^{-1} \lesssim v_{esc} \lesssim 608 \text{ kms}^{-1}$ RAVE survey: 0611671

Beyond the Standard Halo Model

1. Vary galactic parameters:

Beyond the Standard Halo Model

2. Introduce a 'debris flow':

Lisanti, Spergel: 1105.4166 Kuhlen, Lisanti, Spergel: 1202.0007

• Modifying astrophysical-parameters does not improve agreement

Mapping results to velocity integral

- Scattering rate depends on the 'velocity integral'
- Changes in astrophysical parameters enter here

 Cannot improve agreement by varying astrophysical parameters Fox, Liu & Weiner: 1011.1915

Beyond short range interactions

- Standard assumption: DM scatters with a short range contact interaction – via a 'heavy ($m_{\rm med} \gg 50~{
m MeV}$) mediator'

- Agreement does not improve: $q \propto v_{\min}$ for light DM

Beyond equal p and n couplings

- Assumed equal couplings to protons and neutrons
- More generally: $\frac{d\sigma}{dE_{\mathrm{R}}} \propto \left[Z + f_n/f_p(A-Z)\right]^2$
- If $f_n/f_p < 0$, get destructive interference
- Known mediators:

- Photon - Z-boson - Higgs
$$f_n/f_p = 0$$
 $f_n/f_p = \frac{-1}{1 - 4\sin^2\theta_W} \approx -13.2$ $f_n/f_p \approx 1$

• DM mediated by new Z' could give other values

See Frandsen et al: 1107.2118 & 1204.3839

Beyond equal p and n couplings

- Assumed equal couplings to protons and neutrons
- More generally:

$$\frac{d\sigma}{dE_{\rm R}} \propto \left[Z + f_n / f_p (A - Z)\right]^2$$

• Xenon constraints can be significantly weaker

Beyond elastic scattering

• 'Down-scattering' enhances rate for light target nuclei

Summary

- CDMS-Si detected 3 events:
 - DM + background hypothesis preferred at ~ 3σ C.L.
- Strong constraints from XENON10 and XENON100
- Attempts to alleviate tension:
 - Vary astrophysical parameters
 - Short range interaction
 - Distinct couplings to protons and neutrons
 - Inelastic scattering:
 - Up-scattering
 - Down-scattering

Backup slides – CDMS-Si signal

CDMS-Si background distribution

Limits for fn/fp=-0.7

Frandsen, Kahlhoefer, CM, Sarkar, Schmidt-Hoberg:1111.0292

Signal at XENON100?

Hooper: 1306.1790

Backup slides – other signals

DAMA/LIBRA

CoGeNT (Ge) – unmodulated signal

CoGeNT – surface event cut

Christopher M^cCabe IPPP - Durham University

CoGeNT - at TAUP (Sept. 2011)

Cut may not be efficient at low energies:

CoGeNT – modulated signal

CRESST-II (CaWO₄)

CRESST-II: Pb recoils

Consistency of all experiments?

• No known model to bring all experiments into agreement

