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Galaxies and Super-Massive
Black Holes

® Super-massive black holes
at the centre of most
galaxies.

Galaxies merge to create
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Black hole mergers

Centrella et al
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® Sources of grav waves
® Test general relativity

® Should be detectable
~ with eLI5A in ~2020
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Observational Evidence for Binaries
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Gas-driven mergers at large scales

e.g., Escala et al 2004, 2005; Mayer et al 2008; Dotti et al 2009

® When galaxies merge, large amounts of gas
are funnelled to the centre

® This gas can absorb the binary angular
momentum faster than stars

e Efficiently bring the black holes to parsec
distances

® Binary gets circular and coplanar with gas
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t=26Gyr

t=48 Gyr

Mayer et al 20
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Binary + Disc Numerical Models
Cuadra et al 2009

® 3:1 mass ratio binary

® Mdisc =0.2 MBH

® Physical angular momentum
transport due to self-gravity

® Modified Gadget-2 (SPH
code by Springel 2005)

Wednesday, 20 June 2012



Wednesday, 20 June 2012



Binary Orbit Evolution
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Scaling to real systems

® Simulations done for given mass ratios and chosen
cooling time... need to generalise

® Analytical predictions show da/dt dependence on disc
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99)

® Our simulations agree well...

® We can then scale results to different disc properties
using analytical models.
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Maximum disc mass

e Can’t we just have a very large disc to make sure
there’s a merger!?

® No! There’s a maximum mass beyond which
cooling will be too fast and produce fragmentation
instead of transport angular momentum.

Rice et al
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Maximum decay rate

® VWe combine analytical estimates of max

(Levin ‘07) and da/dt to calculate the maximum
decay rate a disc can produce.
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time-scale
timescole [yr]

- few x 0.01 pc

radius [pec]

opocaty table

Fesipotan SRR |

10¢ 197
maoss [Msun]

separation

IMass

Binaries smaller than 107 Mg, could merge.

Binaries will spend most time at few 0.01 pc separations
(hard to observe)
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Star-forming discs

Work in progress with Pau Amaro-Seoane & Patrick Brem

® More massive discs will cool
faster, then fragment and
form stars.

® Stellar scattering continues
driving the merger process.

Wednesday, 20 June 2012



Eccentricity Evolution

Eccentricity

Separation

Eccentricity reaches ~0.35 by the end of the simulation.
No sign of saturation.
Will it growtoe ~ | ?
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Trying different initial eccentricities...

Rodig, Dotti, Sesana, Cuadra, Colpi 201 |
Eccentricity seems to

convergeto e ~ 0.6 !
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Eccentricity evolution

® Secondary produces
instantaneous
overdensity in inner
part of disc.

® |[f eccentricity is low,
overdensity decelerates
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Eccentricity evolution

® |[f eccentricity is high,
overdensity accelerates
secondary at
apocentre, decreasing
eccentricity.

Equilibrium where
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Accretion

primary

® Keep track of gas

“accreted” by each
BH (R<0.1a)
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® More accretion on secondary
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“Observable” consequences

® Higher eccentricity
enhances accretion
rate variability.

® Gravitational wave
observations would

detect remnant
e~ 102- 1073,
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How robust are the
results’?

Trying differ_ent __




Adiabatic EoS plus cooling time proportional to orbital time
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Orbital Evolution
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Orbital Evolution

® Eccentricity evolution is the same.

® Rate of decay, different.

® |f the decay is driven by the disc, why the
conditions in the cavity change it?
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Torque analysis:
gravity and accretion

dL dL
g P |
dt S
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Ang.mom. conservation and torque origin
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Evolution due to accretion
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Binary ang.mom. analysis:
orbital elements

L,=puy/GMa(l — e?)
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Origin of the gravitational torque

horseshoe orbits gas
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Conclusions

® |n simple models, gas discs are able to produce coalescence of
M < 107 Mgy, binaries.

® Expect many binaries at few 0.01 pc separations.

® Binaries become eccentric -- influence the accretion rate
and the gravitational wave signal at coalescence.

® More thorough investigation shows a very complex situation.
® Evolution depends on the balance of opposite sign torques.

® Different thermodynamics and accretion recipes influence
results.

® More realistic models are required.

Wednesday, 20 June 2012 35




