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Galaxies and Super-Massive 
Black Holes

• Super-massive black holes 
at the centre of most 
galaxies.

• Galaxies merge to create 
larger galaxies.

• Do the black holes also 
merge?
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Black hole mergers

• Sources of grav waves

• Test general relativity

• Should be detectable 
with eLISA in ~2020

• Will give much info 
about BHs

Centrella et al
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Observational Evidence for Binaries

NGC 6240 (Komossa+ 03)

0402+379
(Rodríguez+ 06)

OJ 287 (Valtonen+ 05)

J1536+0441 (Lauer & Boroson 09)

All in all, few binary candidates,
they probably merge fast.
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Gas-driven mergers at large scales
e.g., Escala et al 2004, 2005;   Mayer et al 2008;   Dotti et al 2009

• When galaxies merge, large amounts of gas 
are funnelled to the centre

• This gas can absorb the binary angular 
momentum faster than stars

• Efficiently bring the black holes to parsec 
distances

• Binary gets circular and coplanar with gas
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Mayer et al 2008

10-parsec scale disc forms around the binary

Dotti et al 2009
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Binary + Disc Numerical Models
Cuadra et al 2009

• 3:1 mass ratio binary

• Mdisc = 0.2 MBH

• Physical angular momentum 
transport due to self-gravity

• Modified Gadget-2 (SPH 
code by Springel 2005)

• Goal:  find evolution of 
binary

• time-scale for merger

• eccentricity evolution
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Binary Orbit Evolution
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Scaling to real systems

• Simulations done for given mass ratios and chosen 
cooling time...  need to generalise

• Analytical predictions show da/dt dependence on disc 
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99) 

• Our simulations agree well...

• We can then scale results to different disc properties 
using analytical models.
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Maximum disc mass
• Can’t we just have a very large disc to make sure 

there’s a merger?

• No!  There’s a maximum mass beyond which 
cooling will be too fast and produce fragmentation 
instead of transport angular momentum.

Rice et al

14Wednesday, 20 June 2012



Maximum decay rate
• We combine analytical estimates of max  

(Levin ‘07) and da/dt to calculate the maximum 
decay rate a disc can produce.

circumbinary disc effect

stellar scattering

“hung-up point”

binary embedded in gas
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Hubble time

107 Msun

few x 0.01 pc

Binaries smaller than 107 Msun could merge.
Binaries will spend most time at few 0.01 pc separations

(hard to observe)
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Star-forming discs
Work in progress with Pau Amaro-Seoane & Patrick Brem 

• More massive discs will cool 
faster, then fragment and 
form stars.

• Stellar scattering continues 
driving the merger process.

• Also get stellar 
disruptions?

• Complex process: star 
formation and dynamics will 
influence evolution.

17Wednesday, 20 June 2012



Eccentricity Evolution
Ec

ce
nt

ri
ci

ty

Separation
Eccentricity reaches ~0.35 by the end of the simulation.

No sign of saturation.
Will it grow to e ~ 1 ?
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Trying different initial eccentricities...
Rödig, Dotti, Sesana, Cuadra, Colpi 2011

Eccentricity seems to 
converge to e ~ 0.6 !
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Eccentricity evolution

• Secondary produces 
instantaneous 
overdensity in inner 
part of disc.

• If eccentricity is low, 
overdensity decelerates 
secondary at 
apocentre, increasing 
eccentricity.
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Eccentricity evolution

• If eccentricity is high, 
overdensity accelerates 
secondary at 
apocentre, decreasing 
eccentricity.

• Equilibrium where 
angular velocities are 
equal, at e ~ 0.6.
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Accretion
primary

secondary

• Keep track of gas 
“accreted” by each 
BH ( R < 0.1a )

• More accretion on 
to the secondary

• Variability roughly on 
orbital time-scale.
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“Observable” consequences

• Higher eccentricity 
enhances accretion 
rate variability.

• Gravitational wave 
observations would 
detect remnant 
e ~ 10-2 – 10-3.
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How robust are the 
results?  

Trying different 
thermodynamics at the 

cavity...

24Wednesday, 20 June 2012



Adiabatic EoS plus cooling time proportional to orbital time

Cavity modelled isothermallyx
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Orbital Evolution

Roedig, Sesana, Dotti, Cuadra, Amaro-Seoane 2012
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Orbital Evolution
• Eccentricity evolution is the same.

• Rate of decay, different.

• If the decay is driven by the disc, why the 
conditions in the cavity change it?
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Torque analysis: 
gravity and accretion

TG =
N�

j=1

2�

k=1

rk × GMkmj(rj − rk)

|rj − rk|3

dL

dt
= TG +

dL

dt acc
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Ang.mom. conservation and torque origin

adia

iso

grav torque ---

accr torque ····

29Wednesday, 20 June 2012



Evolution due to accretion
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Binary ang.mom. analysis:
orbital elements

Lz = µ
�

GMa(1− e2)

L̇z

Lz
=

ȧ

2a
+

Ṁ

2M
+
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µ
− e

1− e2
ė

Binary can shrink and become eccentric while its 
ang.mom. increases, provided accretion is important.
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Origin of the gravitational torque

integrated torque

local torque dT/dr

horseshoe orbits gas

streams lagging BH
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Conclusions
• In simple models, gas discs are able to produce coalescence of 

M < 107 Msun binaries.  

• Expect many binaries at few 0.01 pc separations.

• Binaries become eccentric -- influence the accretion rate 
and the gravitational wave signal at coalescence.

• More thorough investigation shows a very complex situation.  

• Evolution depends on the balance of opposite sign torques.

• Different thermodynamics and accretion recipes influence 
results.

• More realistic models are required.
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