An introduction to LaTeX

- a document preparation language

Shaun Cole

(from an original lecture by Cedric Lacey)

 You can find these notes and some LaTeX examples on my web page: http://astro.dur.ac.uk/~cole/Intro_LaTeX_PG

What is LaTeX?

- A document preparation system in which the source file contains both text and markup commands
- Create source file using normal text editor
- Run LaTeX program to see result
- LaTeX program decides details of word spacing, line breaks, page breaks, position of figures & tables etc according to instructions in source file

Why use LaTeX?

- Produces high-quality output with uniform style, e.g. for journals, conference proceedings
- Style can be changed simply by global commands or by loading different macro packages
- Lets you concentrate on content rather than formatting/layout
- Very good for mathematics & equations
- Automatic numbering & cross-referencing of sections, equations, figures, tables etc
- Free! Runs on all operating systems
- THE STANDARD for publications in physics, astronomy, maths

Why use LaTeX?

Produces high-quality output with uniform style

- Style can be changed simply by global commands or by loading different macro packages
- Very good for mathematics & equations
- Automatic numbering & cross-referencing of sections, equations, figures, tables etc
- Free! Runs on all operating systems
- THE STANDARD for publications in physics, astronomy, maths

Useful books

Guide to Latex

- by H. Kopka & P. Daly
- describes standard features & some additional ones HIGHLY RECOMMENDED!

The Latex Companion by Goossens, Mittelbach & Samarin - describes lots more optional/additional features

- both of these in Astronomy reading room

Useful books

Guide to LATEX by H. Kopka & P. Daly

describes standard features & some additional ones
 HIGHLY RECOMMENDED!

LATEX: A document preparation system by Leslie Lamport

describes basic features, but not many examples

somewhat out of date

The LATEX Companion by Goossens, Mittelbach & Samarin

describes lots more optional/additional features

Useful websites:

A very brief overview to get you started: http://www.tug.org/begin.html

A much more detailed introduction: http://tug.ctan.org/pub/texarchive/info/ beginlatex/html/beginlatex.html

Another general introduction: <u>http://amath.colorado.edu/documentation/</u>LaTex

More websites:

A primer for typesetting equations in LaTeX: http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/

some hints about including graphics: http://merkel.zoneo.net/Latex/index.php?lang=en

Latex beamer http://gking.harvard.edu/files/beamerusrguidef.pdf how to cite references using natbib package:

http://merkel.zoneo.net/Latex/natbib.php

references using BibTeX: http://www.bibtex.org

Macros & tips for PhD theses in LaTeX

Durham PhD thesis macros: http://www.cs.st-andrews.ac.uk/ ~eb/thesisclass.php

another example, with useful hints: http://amath.colorado.edu/documentation/LaTeX/ thesis/sample/

LaTeX & TeX

- The LaTeX program is actually written in a lower-level typesetting language TeX
- If you want to install LaTeX on your own computer, have to install TeX first (or install TeX & LaTeX together)
- But normal user can use LaTeX without knowing anything about TeX
- Can use some TeX commands in LaTeX documents – but better to use LaTeX equivalents (added functionality, usually clearer & simpler)

How to install TeX & LaTeX

- If you want to install TeX & LaTeX on your own laptop:
- Linux: download teTeX distribution from www.tug.org/tetex
- Windows: try MiKTeX from <u>www.miktex.org (in Russian?)</u> or TeXnicCenter from sourceforge.net/projects/texniccenter
 Mac OS X: try gwTeX from ii2.sourceforge.net/tex-index.html or TeXShop distribution (includes GUI) from http://www.uoregon.edu/~koch/texshop

How to run LaTeX under Linux/Unix

- Create a LaTeX source file with suffix '.tex', e.g. mypaper.tex, using a text editor
- Use an editor which provides special features for LaTeX files e.g. emacs
- Run LaTeX program: > latex mypaper.tex
 OR
 - > latex mypaper (suffix .tex assumed!)
- Producing a file mypaper.dvi
- Can view on screen (if EPS figures) using
 xdvi mypaper.dvi (OR > xdvi mypaper)

Producing Postscript output

- Postscript (PS) files, suffix '.ps', are designed to be printed, but can be viewed on screen, e.g. Using gv (ghostview)
- To produce .ps from .dvi:
 - > dvips -o mypaper.ps mypaper.dvi
- For this to work, included figures/graphics must be Encapsulated Postscript (EPS) files, suffix '.eps'
- Then print: > lp mypaper.ps
 Or view on screen: e.g. > gv mypaper.ps

Producing PDF output

- Portable Document Format (PDF) files are designed to be viewed on screen, e.g. using acroread, but can be printed from a PDF viewer
- Three ways to make from LaTeX:
- (1) from .ps file (output: mypaper.pdf)
 > ps2pdf mypaper.ps
- (2) from .dvi file
 - > dvipdf mypaper.dvi
- (3) directly from .tex file (output: mypaper.pdf)
 > pdflatex mypaper.tex
- For (3) to work, included figures/graphics must be either PNG (.png) or PDF (.pdf) (or JPEG (.jpeg, .jpg) in some versions)

Some other things....

- There are programs which can convert your figures/graphics between different formats, e.g, .eps to .png e.g. in Linux can use display or convert, on MAC use preview
- There are also programs which can convert your LaTeX files directly to HTML for web pages

How to run LaTeX under Windows

 Basic procedure same as in Linux, i.e. file.tex (latex) -> file.dvi (dvips) -> file.ps
 OR file.tex (pdflatex) -> file.pdf

 Much easier if install editor with built-in features for LaTeX, e.g.

 WinShell (free) from <u>www.winshell.de</u>
 WinEdt (costs US\$30 for students) from www.winedt.com

How to run LaTeX under Mac OS X

Basic procedure same as in Linux, i.e.
 file.tex (latex) -> file.dvi (dvips) -> file.ps

OR file.tex (pdflatex) -> file.pdf

- More convenient to work with PDF rather than PS on Macs
- If you like a graphical front-end, try TeXShop from

http://www.uoregon.edu/~koch/texshop

Now a simple example

 LaTeX demodoc.tex, with included figure fig.eps

Structure of a LaTeX file

\documentclass[options]{class_name}
% documentclass determines overall structure

preamble – global commands which affect whole document

\begin{document}

text
+ instructions for including figures

\end{document}

Standard document classes

- article : document has sections, subsections, sub-subsections, e.g. For paper in journal or conference proceeding \documentclass{article}
- report : also has chapters, title page, table of contents, e.g. For L4 or PhD thesis
- book : similar to report, but extra features for publication-quality book
- letter : for writing letter letterhead but no sections

Other document classes

- Many people have created modified versions of standard classes. For these, you need class file, e.g. thesis.cls (modified report.cls), then
 - \documentclass{thesis}
- Each journal has its own style. Download .cls file from journal webpage
- MNRAS: mn2e.cls (modified article.cls) \documentclass{mn2e}
- ApJ, AJ: aastex.cls \documentclass{aastex}

Document class for L4 dissertation

- Many people have created modified versions of standard classes, e.g. for writing PhD theses
- For these, you need class file, e.g. duthesis.cls (modified report.cls) produces layout for Durham PhD thesis, which you can also use for L4 thesis
- Download duthesis.cls from http://www.cs.st-andrews.ac.uk/~eb/thesisclass.php
- Then begin document with

\documentclass{duthesis}

 See my example thesis_example.tex, also thesis_template.tex

Loading packages

- Packages are used to add additional features, or to modify standard features of class
- Need \usepackage command in preamble, e.g. \usepackage{amssymb}
 - which adds extra math symbols
- Needs file amssymb.sty to be in current directory or elsewhere in LaTeX search path

Splitting a document into different files

- For long documents (e.g. PhD thesis) better to split into several files
- e.g. File main.tex could contain:
 - \documentclass{report}
 - \begin{document}
 - \input{chap1}
 - \input{chap2}
 - \end{document}
- Inputs chap1.tex, chap2.tex
- Effect is same as cutting & pasting chap1.tex etc into main.tex at position of \input command

Special characters for commands

- These characters are used in a LaTeX file in markup commands: \% # \$ & ~ _ ^ { }
- \begins a command name
- % begins a comment
- {} delimit the arguments to commands and the range within which some commands act
 <u>\$ starts/ends math mode</u>
- If you want %, &, \$ to appear in document, need to type \%, \&, \\$ in .tex file etc

Font sizes & styles

 Can change overall fontsize using optional argument in \documentclass, e.g. \documentclass[12pt]{article}

- For italics use \em, e.g.
 Some text {\em some text in italics} more text
- For boldface use \bf, e.g.
 Some text {\bf text in bold} more text
 Greek characters available in math mode, e.g. The \$\alpha\$-elements

Defining your own commands

• Use \newcommand e.g.

\newcommand{\etal}{{\em et al.}}

 Effect is equivalent to replacing every appearance of \etal in file with {\em et al.}

Can also define commands with arguments

Chapters, sections, etc

- e.g.
 - \chapter{The model}
 - \section{Dark matter halos}
 - \subsection{Density profiles}
 - \subsubsection{Some irritating details}
- Heading will be printed using text in {}
- Chapters, sections etc will be numbered automatically
- e.g. Chapter 1, Section 1.2, Subsection 1.2.5, etc

Lists

 LaTeX can make various kinds of lists, e.g. \begin{itemize} \item apples \item oranges \item bananas \end{itemize} will list items preceded by bullet-points \begin{enumerate} etc will make list with items numbered 1,2,3 etc

Equations

- . In math mode, can have
- . Greek characters, e.g. \alpha
- Other math symbols, e.g. \leq
- Fractions, integrals etc
- Subscripts, e.g. x_n
- Superscripts, e.g. y^2
- AMS-LaTeX package amsmath gives even more possibilities \usepackage{amsmath}

Text & displayed equations

- Text equations are embedded in normal text and start and end with \$, e.g. We define \$y=x^2\$....
- No equation numbers for text equations
- Displayed equations appear on a separate line, and can have numbers, e.g.
 \begin{equation}
 y = x^2

\end{equation}

For multi-line equations, use \begin{eqnarray} etc

Equations: Example 1

• You type:

 $\begin{equation} \ P_{\m gal}(k) = \ 1+0k^{2} \ 1+Ak} \ P_{\m lin}(k), \ \end{equation}$

• You get:

$$P_{\rm gal}(k) = \frac{1 + Qk^2}{1 + Ak} P_{\rm lin}(k), \qquad (3.1)$$

Equations: Example 2

• You type:

• You get:

$$1 - n_{\rm s} = 2\epsilon_1 + \epsilon_2 \tag{3.3}$$

$$r = 16\epsilon_1. \tag{3.4}$$

Including graphics

- Modern way to include graphics from file uses graphicx package: preamble must include \usepackage[dvips]{graphicx} (for dvips)
 OR
 - \usepackage[pdftex]{graphicx} (for pdflatex)
- Then to include a graphics file
 \includegraphics[key=value,...]{file_name}
- e.g.

\includegraphics[width=8.5cm]{myplot}

 Will load myplot.eps (for dvips) or myplot.png or myplot.pdf (for pdflatex) and rescale to width of 8.5cm

Floating figures

- \includegraphics command will try to insert figure at that point if space on page, otherwise on next page, leaving blank space on current page
- Better to let figure "float", using figure environment, e.g.
 - \begin{figure}
 - \includegraphics[scale=0.6]{lumfun}
 - \caption{The luminosity function}
 - \end{figure}
- . This also gives the figure a caption and a number
- WARNING: may need to tune figure placement manually

 Make tables using \tabular environment, e.g. \begin{tabular}{lcc} galaxy & magnitude & redshift \\ NGC 891 & 15.5 & 0.02 \\ M87 & 14.8 & 0.01
 \end{tabular}
 Which left-justifies 1st column and centres 2nd

and 3rd columns

& separates columns and \\ separates lines

Tables: Example

. You type:

```
\begin{tabular}[t]{cc}
\hline\hline
             🐘 & Allowed range \
Parameter
\hline\hline
$\Omega {k}$ & $-$0.3 -- 0.3 🔥
$\omega_{\rm dm}$ & 0.01 -- 0.99 🛛 📢
$\omega_{\rm b}$ & 0.005 -- 0.1 \\
$f_{\rm \nu }$ & & 0 -- 0.5 \\
$w {\rm DE }$ & $-$2. -- 0 \\
               & O -- 0.8
$∖tau $
                                77
$n_{\rm s}$ & 0.5 -- 1.5
                                   ٦٩
$\log_{10}(10^{10}A_{\rm s})$ & 2.7 -- 4.0 \\
       & 0 -- 1 🛝
SrS.
            🐘 & marqinalized 🛛 📢
SDS.
              & 0.5 -- 10
$\Theta $
                           ×۱۱
\hline\hline
\end{tabular}
```

Tables: Example (continued)

• You get:

Parameter	Allowed range
Ω_k	-0.3 - 0.3
$\omega_{ m dm}$	0.01 - 0.99
$\omega_{ m b}$	0.005 - 0.1
$f_{ u}$	0 - 0.5
$w_{ m DE}$	-20
au	0 - 0.8
$n_{ m s}$	0.5 - 1.5
$\log_{10}(10^{10}A_{\rm s})$	2.7 - 4.0
r	0 - 1
b	marginalized
Θ	0.5 - 10

Floating tables

- Usually make tables "float" (like figures) using table environment, e.g. \begin{table}
 \caption{Galaxy magnitudes and redshifts}
 \begin{tabular}{rlcc}
 - \end{tabular}
 \end{table}

.

 Which also gives the table a caption and a number

Cross-referencing

- Can cross-reference sections in a paper, equations, figures, tables using \label to create labels, and \ref to refer forward or back to them
- e.g. to label a section: \section{Dark halos}
 - \label{sec:halos}
- Then to refer to it:
 - We discuss the structure of dark halos in Section~\ref{sec:halos}
- LaTeX will insert actual section number
- Cross-referencing info written to .aux file
- Must run LaTeX TWICE to get final document

Cross-referencing figures & tables

- Works similarly for figures & tables, e.g. \begin{figure}

 - \caption{The luminosity function}
 \label{fig:lumfun}
 - \end{figure}
- NB \label inside figure environment after \caption
- . Then to refer to it:
 - We show in Fig.~\ref{fig:lumfun} that....
- \ref{...} gets replaced by actual figure number in document

Cross-referencing equations

Similarly for equations, e.g. \begin{equation} P_a = \frac{y_3/x^2} \label{eq:p_a} \end{equation}
Then to refer to it: \$P_a\$ is defined in eqn.(\ref{eq:p_a}).....

• The brackets () here enclose the equation number in brackets, e.g. eqn.(3.2)

Bibliographic references – simple approach

 Use the natbib package: \usepackage{natbib}

Create your bibliography (in alphabetical order):

. \begin{thebibliography}{}

\bibitem[Smith \& Jones (1990)]{Smi90} Smith, A., \& Jones, B., 1990, ApJ 231, 506

\end{thebibliography}

One \bibitem for each article or book referred to
LaTeX will typeset your bibliography

Refering to a paper in the bibliography (using natbib)

- Then to refer to a paper in the text, use \citet or \citep or \citeauthor or \citeyear, e.g.
- \citet{Smi90} produces "Smith & Jones (1990)"
- \citep{Smi90} produces "(Smith & Jones 1990)"
- . \citeauthor{Smi90} produces "Smith & Jones"
- See documentation on natbib for more possibilities

Bibliography with BibTeX

- A more sophisticated approach is to store all your bibliographic data in a separate (or multiple) BibTeX file(s)
- You then have to run the BibTeX program along with LaTeX
- But different LaTeX documents can share the same BibTeX files, so you only ever need to enter references in the database once
- See <u>www.bibtex.org</u> or "Guide to LaTeX" (Kopka & Daly) for more details
- Compatable with natbib citation package

Example BibTeX entry

- You create bibliographic database file, e.g. refs.bib
- example entry:
 - @ARTICLE{Almeida2007a
 - author = {Almeida, C., Baugh, C.M. and Lacey, C.G.}, title = {The structural properties of galaxies in CDM},
 - journal = MNRAS,
 - year = 2007,
 - volume = 376,

```
pages = {1711-1726}
```

- File begins...ends with
 - \begin{thebibliography}...\end{the bibliography}
- ADS will create entries in BibTeX format for you

Running BibTeX with LaTeX

- Main LaTeX file (e.g. paper.tex) must specify (somewhere) bibliographic style, e.g.
 \bibliographystyle{mn2e}
- loads file mn2e.bst
- And specify where bibliography to appear & which databases to load, e.g.
- \bibliography{refs}
- loads file refs.bib
- Need to run LaTeX (e.g. latex paper), then BibTeX (bibtex paper) (creates file refs.bbl), then LaTeX again (TWICE)