
6.2 schroedinger in 3D spherical polars (cont)

we had that for any radially symmtectic potential V (r) = V (r, θ.φ) = V (r)
then the wavefunction solution of the time independent Schroedinger equa-
tion Hψ = Eψ separates into φ(r) = R(r)Θ(θ)Φ(φ) = R(r)Y (θ, φ) where
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the rhs is a function only of r, the lhs is a function only of θ, φ. the only
way these two can be equal to each other is if NEITHER has any r, θ, φ

dependance i.e. its a constant.
and for ANY radial potential, the angular dependencies are the same! these
functions are then very general and just tell us something about the spherical
symmetry thats imposed by a radial potential. These functions Y are called
spherical harmonics.
we can actually see what they are really all about by thinking of the special
case of a rigid rotator. A particle of mass µ is attached to a rod of length
a fixed at the origin but which can freely rotate about all axes. if there is
no potential then V = 0. But there is no radial motion so all the radial
derivatives vanish too. so the Schroedinger equation becomes
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but we can now see what all these angle terms are about - because this is
fixed in radius, the kinetic energy can only be talking about angular motion
- so we are really talking about angular momentum!!

7 Orbital angular momentum

7.1 cartesian coordinates

in 3D we can think about concepts involving angular momentum (in 1D
by definition we can only do linear momentum!). We know from classical
mechanics that the orbital angular momentum vector is L = r × p where
r = xi + yj + zk is the posistion vector (in cartesian coordinates) and p =
pxi + pyj + pzk is linear momentum (also in cartesian coordinates).
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L = r × p = (xi + yj + zk) × (pxi + pyj + pzk)

= xpyk + xpz−j + ypx−k + ypzi + zpxj + zpy−i

= (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k = Lxi + Lyj + Lzk

where

Lx = (ypz − zpy) Ly = (zpx − xpz) Lz = (xpy − ypx)

remembering back to operators, we replace x with x̂ = x and p with p̂x =
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so L = −ih̄(r ×∇) = L̂xi + L̂yj + L̂zk

All the operators L̂x, L̂y, L̂z are Hermitian. We are not actually constraining
both position and momentum along the same direction - we are constraining
position along one axis, with the momentum along another axis!! and we can
measure both of these together. Lets prove this eg for x and py
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Heisenburg undertainty principle applies position and momentum along the
SAME direction. any other orthoganoal direction is independent.
since these are Hermitian, their expectation values are real and their nor-
malised eigenvectors are orthonormal.

7.2 combinations of Lx,Ly,Lz

As soon as we start trying to constrain combinations of these, then we run
into trouble - its not hard, just keep your head and keep going!

[Lx, Ly] = [(ypz − zpy)(zpx − xpz)]
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= [ypz, zpx] − [ypz, xpz] − [zpy, zpx] + [zpy, xpz]

only position and momentum along the same coordinate have commutator
6= 0 e.g. [x, px] = ih̄.

= [ypz, zpx] + [zpy, xpz] = ypx[pz, z] + xpy[z, pz] = −ih̄ypx + ih̄xpy = ih̄Lz

likewise [Ly, Lz] = ih̄Lx and [Ly, Lz] = ih̄Lx. These cannot be measured
together.
so this all means that we cannot simultaneously measure all the components
of L. we can’t simultaneously know any pair of Lx, Ly, Lz. so is there any
more information we can know about angular momentum together with one
of its components?

7.3 Total angular momentum L2

turns out that the thing we can measure alongside with one of the components
is total angular momentum L2 = L2

x + L2

y + L2

z. This commutes with each
of the components so [L2, Lx] = [L2, Ly] = [L2, Lz] = 0. so we can measure
any single component of angular momentum simultaneously with the total
orbital angular momentum. We choose Lz as the one to measure along with
L2 because it has a relatively simple form compared to Lx and Ly in spherical
polar coordinates. However, by choosing Lz and L2 we know these commute,
so they have a common set of eigenfunctions. so now we need to find them!!

7.4 Transformation to spherical polar coordinates

while we worked these out in cartesian coordinates, the real use of this will
be in spherical polar coordinates. so we do the transformations with a lot of
chain rule and get:
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AHA!!!! look at that!! L2 is pretty much what we had in the spherical polar
3D Schroedinger equation!!!
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so now we can really see why we want to know about angular momentum!!!

7.5 Eigenfunctions of Lz

we were looking at the combination of Ylm = Θ(θ)Φ(φ). But since Lz only
depends on φ we can solve this.
These must be of the form LzΦm = mh̄Φm where we have put an h̄ in for
convienience
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so Φm ∝ eimφ. When we normalise this we get Φm = (2π)−1/2eimφ

This equation is satisfied for any value of m, but in order for the solution to
be single valued we require Φm(0) = Φm(2π) i.e.

(2π)−1/2eim0 = (2π)−1/2eim2π

1 = eim2π = cosm2π + i sinm2π

and this relation is satisfied only if m = 0,±1,±2, . . .
Hence the eigenvalues of Lz are 0,±h̄,±2h̄ . . .. Becasue the z-axis could
be chosen to be along an arbitrary direction then the component of orbital
angular momentum about ANY axis is quantised. m is called the magnetic
quantum number, due to the role it plays in the response to a magnetic field.
since these are eigenfunctions, they are orthonormal.

∫
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and we could write any function f(φ) =
∑

cmΦm
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