
12.2 easier solutions?

If we had only chosen ψ+ and ψ− as our original wavefunctions then we would
have had a much simpler equation to solve - its diagonal, so we could just
read off the solutions

(

W++ 0
0 W−−

)(

α
β

)

= E1

(

α
β

)

i.e.

(

W++ − E1 0
0 W−− −E1

)(

α
β

)

= 0

so this has solutions (W++ − E1)α = 0 i.e. E1
+ = W++ =< ψ+|H

′ψ+ > and
(W−− − E1)α = 0 i.e. E1

−
= W++ =< ψ−|H

′ψ− >

if we feed each of these into the matrix then we get for E1 = W++

(

0 0
0 W−− −W++

)(

α
β

)

= 0

so the first line is zero by construction, and the second line is (W−− −
W++)β = 0 so β = 0 and the wavefunction is ψ+

while forE1 = W−− we get (W++−W−−)α = 0 so α = 0 and the wavefunction
is ψ−

so these are the wavefunctions which diagonalise the perturbation. and our
solutions are simply the equations we’d have picked if we hadn’t bothered
thinking at all about the levels being degenerate!!
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12.3 link to non-degenerate perturbation theory

but how do we get there in advance ? how do we be clever, not just lucky!
we know we want the off axis terms to be zero, so we are just solving

(

Waa − E1 0
0 Wbb − E1

)(

α
β

)

=

(

0
0

)

i.e. < ψ0
a|H

′ψ0
b >= 0. The obvious way this is true is if ψ0

b is also an
eigenfunction of H ′ as then H ′ψ0

b = bψ0
b and then < ψ0

a|H
′ψ0

b >= b <
ψ0
a|ψ

0
b >= 0

what we do is find some Hermitian operator A which shares common eigen-
functions with H0 i.e. [A,H0] = 0. Thus ψ0

a and ψ0
b are also eigenfunctions

of A - but where the eigenvalues are distinct unlike the case for H0 where
they are degenerate i.e Aψa = µψa and Aψb = νψb for µ 6= ν. If this operator
also commutes with the perturbation i.e. [A,H ′] = 0 then ψa and ψb are the
states where the non-diagonal terms in the matrix Wab =< ψ0

a|H
′ψ0

b >= 0
and so we can use non-degenerate perturbation theory to work it out

Lets show this explicitally:

< ψa|[A,H
′]ψb >= 0

< ψa|AH
′ψb > − < ψa|H

′Aψb >= 0

< Aψa|H
′ψb > − < ψa|H

′νψb >= 0

µ < ψa|H
′ψb > −ν < ψa|H

′ψb >= 0

(µ− ν)Wab = 0

12.4 higher order degeneracy

This generalises very easily for n-fold degeneracy. We form the matrix ele-
ments Wij =

∫

ψ0∗
i H

′ψ0
j dx where i, j go from 1, 2...n. then we get an nxn
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matrix, with n separate roots (some of which may be zero if the matrix is
very sparse)

12.5 3D square well example

V (x, y, z) = 0 for 0 < x < a and 0 < y < a and 0 < z < a, otherwise its ∞
this had wavefunctions

ψ0

nx,ny,nx
=
(2

a

)3/2
sin nxπx/a sinnyπy/a sinnzπz/a

E0

nx,ny,nz =
π2h̄2

2µa2
(n2

x + n2

y + n2

z)

the ground state in non-degenerate but the first excited state is tripally
degenerate as we can have ψ211, ψ121, ψ112 all with the same energy.

introduce the perturbation of V0 for 0 < x < a/2 and 0 < y < a/2. - but
this extends over all z.

now lets do the first excited state which is 3 fold degenerate let ψ1 = ψ211,
ψ2 = ψ121 and ψ3 = ψ112 we can calculate each matrix element

W11 =
(2

a

)3

V0

∫ a/2

0

sin2 2πx/adx
∫ a/2

0

sin2 πy/ady
∫ a

0

sin2 πz/adz

look up the integral

∫ a/2

0

sin2 πx/adx = [
x

2
−

sin(2πx/a)

4π/a
]
a/2
0 =

a

4

so we get

=
(2

a

)3
∫ a/2

0

sin2 2πx/adx
∫ a/2

0

sin2 πy/ady
∫ a

0

sin2 πz/adz =
V0
4
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similarly W22 = W33 = V0/4. but the off diagonal get a bit trickier

W12 =
(2

a

)3

V0

∫ a/2

0

sin 2πx/a sin πx/adx
∫ a/2

0

sin 2πy/a sinπy/ady
∫ a

0

sin2 πz/adz

but

∫ a/2

0

sin(2πx/a) sin(πx/a)dx = [
a sin(πx/a

2π
−
a sin(3πx/a

6π
]
a/2
0

=
a

2π
+

a

6π
=

2a

3π

so the full thing is

W12 =
(2

a

)3

V0
2a

3π

2a

3π

a

4
=

23V02
3

2232
=

16

9π2
V0 = κV0/4

where κ = 16.4/(9π2) as it just makes life easier

W13 =
(2

a

)3

V0

∫ a/2

0

sin 2πx/a sin πx/adx
∫ a/2

0

sin2 πy/ady
∫ a

0

sin 2πz/a sin πz/adz = 0

since Wij = W ∗

ji then we now know W31 = 0 and W21 = κV0/4

W23 =
(2

a

)3

V0

∫ a/2

0

sin 2πx/a sin πx/adx
∫ a/2

0

sin2 πy/ady
∫ a

0

sin 2πz/a sin πz/adz = 0

so the full matrix is







W11 W12 W13

W21 W22 W23

W31 W32 W33













α
β
γ





 = E1

2







α
β
γ






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so

V0
4







1 κ 0
κ 1 0
0 0 1













α
β
γ





 = E1

2







α
β
γ













1 κ 0
κ 1 0
0 0 1













α
β
γ





 =
4E1

2

V0







α
β
γ







so let w = 4E1
2/V0 and subtract and get







1− w κ 0
κ 1− w 0
0 0 1− w













α
β
γ





 =







0
0
0







so the non-trivial solution (i.e. α, β, γ 6= 0) is when the determinant of the
matrix is zero
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