11.2 first order correction to the wavefunction

This can be calculated from o} = D ontl ety where
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while perturbation theory often yields surprisingly accurate first order cor-
rections to the energies, E!, the first order wavefunction corrections, !, are
notoriously poor

11.3 second order correction to energy

The second order correction done straightforwardly from our estimate for 1}
B2 =< 1A} >
or we can expand this out into the full sum

Ey =< UnlH' >~ camthy, >= 3 cum < Py |H'Yy, >
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But H' is also hermitian (gives us a energy which is always real!) so

<Y H oy, >=< H'y |, >=< 4y, |[H'y >



so then we have
<P [H'Y) >< pp| H'pny >=< U0 [H'p)) >< @0 [H'Y) >*= | < 4 |[H'py) > |?

and finally
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so B, ~E°+E!'+E%+ ...

12 Degenerate perturbation theory

all that depended on F,, — E,, # 0. but we had a lot of degenerate levels in
hydrogen! so we really need to know how to treat degenerate levels.

12.1 two fold degeneracy

suppose we have a level where there are exactly 2 states ¢° and ¢ which
give the same energy E°, so any linear combination " = a)? + ¢} also
gives the same energy E e.g. in hydrogen for [ = 0,m = 0,m, = +1/2.

typically the perturbation H’ breaks the degeneracy, so that E° splits into
two, with the difference in energy increasing as A goes from 0 — 1. when we
turn off the pertubation, the upper states goes back to a unique «a, # while
the lower states goes back to another unique «, 5. we want to find these
‘good’ unperturbed states!!

we have the same first order correction expression

HOQ/JI —|—H/1/}0 — EOwl _i_Ele



but now we multiply by ONE of our states ¢/°* and integrate
<Y HOP > + <P HY >=< Y| B2 > + < g E'9° >
< (H%o9" > + < g H'Y? >=< 3| B >< 4" |B'Y° >
E° <ot > + < yQ|H'Y’ >= E° < glv' > +B' < ygly® >
<o H'YO >= E' < ¢Qy° >
< Yo H'(adhg + Byy) >= E' < ql(anpy + Byy) >
o < Yol H'Yg > +5 < vl H'Yy >= E'a <yl > +E'B < |ty >
a < YJHY) > +B8 < Y| H'Y)) >= E'a
we can write this more compactly as
AW + BWay = B where Wy =< (0| H'y >= / YO By da

and i, j is one of a,b. We could have multiplied by ¥?* instead in which case
we would get

AWy + Wy, = BE
this is a matrix equation where

Waa Wab « _ 1 «
(Wba Wbb><6>_E (ﬁ)
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we can solve this by subtracting

Wea — E' Wy a\ (0
Wba Wbb - El 6 B 0

so the only non-trivial solutions are where the determinant of the 2x2 matrix
is zero so it can’t be inverted! so

(Waa - El)(Wbb - El) - WabWba =0
but Wy, + Wy, so
WaaWbb - (Waa + I/Vbb)Ej1 + (E1)2 - |I/Vab|2 =0

this is just a quadratic and so it has 2 solutions

1
EL = 5 [Waa + Wip £ \/(Waa + Wig)? — 4(WaaWay — [Wn|2) = 0

1
E:ll: - §[Waa + Wy £ \/<Waa - Wbb)2 + 4‘Wab‘2> =0

12.1.1 example

Two states, 1, and v, are degenerate, both having energy E°, so any linear
combination 1 = a1, + B, also has energy E°. A small perturbation, H’,
causes a small change in energy, and the first order approximation for this,
E', is given by the solution of a matrix equation.

suppose the H' is such that < ¢°|H'¢? >=< ?|H'Y? >= k (i.e. & is real)
while < YO|H'Y? >=< Q| H'Y) >=1

the matrix equation for E' such that

(3)(5)==(5)



(i) (5)=7(5)
(e ) (5

only non-trivial solution when the determinant is zero. (1 — E)? —k? =0

sol—FEL=+4kor EL =1+k.

so we can draw a graph of the energies splitting as we turn up the pertur-
bation AH’ by turning up A from 0 to 1 - energies go from both being E° to
splitting into E° + E} and E° + E!

what are the corresponding wavefunctions which ’follow’ the perturbation?
we can solve separately for E1 by substituting into our matrix, so EY = 1++x

gives
(e ) (5)

so —ka + kf = 0 so a = . and we need the standard normalisation
conditions of o 4 5% =1 s0 ¥y = 1/v2(¢0 + ).

similarly for E! =1 — x we get

ie. ka+kKB=0o0ra=—Fso_ =1/v2(°— ).



these wavefunctions are special combinations of our original wavefunctions in
that they are wavefunctions that follow the perturbation. If we had chosen
these to start with then the matrix elements would have been

Wip =< QLHY] >=1/2 < g + | H' (g + ¥y >
= 1/2(< Y5 H'Yg > + < Yl H'Yy > + < Yy H'Yg > + < )| H'Yy >)
=1201+k+Kr+1)=1+k
Wi = W*, =< g0 [H"Y® >=1/2(< ¢ + 6| H' (40 — ) >
= 1/2(< Y| H' g > — < Yl H'Yy > + < p|H'Yg > — <yy|H'dy >) = 1/2(1—k+r—-1) =0
Woo =< 2 [HWYY >=1/2(< 4y — ¥yleH (Y — ¥y >
= 1/2(< Y5 H'Yg > — < G H'Yy > — < Gy |H'g > + < | H'Yy >)
=120—-k—rk+1)=1—k



