7.2 Eigenvectors of L?

so now we know that L,®,, = mh®,, where ®,, = (2r)~/2e™¢. But we also
know that there has to be a common set of eigenfunctions which are BOTH
eigenfunctions of L, AND of L?. We will call these Y},,(0,¢). We already
know that these have to be eigenfunctions of L, so

LYy (0¢) = mhY (6¢)
but these must also be eigenfunctions of L? so
LY (00) = 1(I + 1)1*Yim(0)

where again we have choosen to scale by A% and the reason for calling the
eigenvalue [(I + 1) will become clear soon!

We can see that Y}, (6¢) must be separable into Oy,,(0)®,,(¢) where ®,, is
as above and © can only be a function of # and not ¢ as otherwise it would
be changed by L, = —iha% and then this wouldn’t be an eigenfunction of
both of them.

so solving
L¥Yin(00) = (1 + 1)hY;,,(09)
L?O(0)®,,(0) = (I + 1)h*O(0) Dy (¢)
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divide out ® to get just a function of 6 so 9/00 — d/df
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and rearrange
1 d d m?
—(sinf— (l+1) — ——)0,, =
(Gngag®nfgg) + 10+ 1) = 575)Om =0

the equation is ugly but well known mathematically. When m = 0 the solu-
tions are Legendre polynomials P;(cosf), where the higest order polynomial
term is of order [ where [ = 0,1,2... and is called the orbital angular mo-
mentum quantum number some examples are

Py(cosf) =1
Pi(cos®) = cosf

1
P, = 5(300s2«9 - 1)

1
Py = 5(500539 — 3cosf)

so like the hermite polynomials, the pattern is that even | only has even
powers of cosf, odd 1 only has odd powers of cos@.

for m # 0 the solutions are given by the associated Legendre polynomials
which are related to the |m|" derivative of F;. But since P is a polynomial
of degree [, then its 141 derivative will vanish. so for a fixed value of [, |m|
can only take the values 0...[, so the allowed values of m for a given [ are

m=—l,—l+1,-1+2...0,1,2...(1—1),1

so there are 21+1 values of m for every l.

Then we normalise these to get our solutions for ©;,,(#). the normalisation
integral is only over 6 so [ ©} (0)0;,(0)sinfdf. then we get

m 20+ 1 (1 —m)!
O = (1" El+m;!

@lm = (_1)m@l|m| m <0
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7.3 Spherical harmonics Y},,(0¢)

the eigenvectors common to L? and L, are given by

20+ 1 (1 —m)!
4 (I+m)!

Yim = 01 ®,, = (—1)’”( )I/QPZm(COS 0)e™ m >0

Vin = (—1)"Y7",, m <0
with allowed values m = 0,+1,4+2... + L.
we can now see the limit on values which m can take more physically as
<DP>=<L+L+L>=<Ll>+<Ll>+<L}>
since these operators are all hermitian then these are all real so
<L*> > <L?>

/ / Yy L2Y,,, sin 0d0d¢ > / / Y, L2Y,,, sin §d0d¢

Im*™z
/ / [(1 + 1)h2Yiy, sin 0d0de > / / (mhY,,) sin 0d0de
Il + 1)k >// m2h2Yi,,) sin 0d0de
(l+1) >

its obviously true for m = [, and not true for m = [+1 as the rhs is [? + 2] +1
which is bigger than the lhs of [ + [. so this limits the values of |m| <

The fact that we have determined L, means that L, and L, cannot be si-
multaneously determined - if we measure them we will get a value which is
quantised at 0, +h, £2h etc but the actual value is uncertain. However, we
can explicitally evaluate their averages, < L, > and < L, >. And these both
turn out to be zero. so although the particular value of L, and L, cannot be
predicted, their average value can.

So how do we visualise a system where we have L? and L, with quantised
values, but where < L, > and < L, >= 07 we can do this with a classical



vector model. The angular momentum vector of magnitude /(I 4+ 1)h pre-
cesses around the z axis, so the z component is always fixed at mh. Because
of the precession, < L, > and < L, > vanish.

so thats the agnular momentum done. what about the wavefunctions them-
selves? we can plots these Y™ out - A polar plot represents the magnitude
(absolute value) of the function as the length of a line centered at the origin,
and it represents the values of the angles 6, ¢ by the direction of the line.

but more useful than wavefunctions of course is probability distributions.

The probability of finding the particle within volume dV = dA = sin 8dfd¢ of
position 0, ¢ is dP = |Y},,|* sin 0dAd¢ so if we want the probability density in ¢
then we have to integrate over all theta dP = D(¢)do = [iq |Yim|? sin 0d0de
conversely, if we wanted the probability density in 6 we’d do dP = D(0)df =
fO% |Yim|?dp sin Od¢ similarly, if we want the probabilty per unit area on a
sphere, then its dPdA = |Y;,,|*dA so

The ¢ dependence drops out, so the probability of finding the particle is
independent of ¢ so we can plot these more easily. This gives a polar diagram,
showing the dependence of the probability on 6. A polar plot represents the
magnitude (absolute value) of the function as the length of a line centered
at the origin, and it represents the values of the angle 6 by the direction of
the line.



