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Introduction

Quantum Mechanics Problems (QMP) is a source book for instructors of introductory quantum
mechanics. The book is available in electronic form to instructors by request to the author. It is free
courseware and can be freely used and distributed, but not used for commercial purposes. The aim
of QMP is to provide digestable problems for quizzes, assignments, and tests for modern students.
There is a bit of spoon-finding—nourishing spoon-feeding I hope.

The problems are grouped by topics in chapters: see Contents below. The chapter ordering
follows roughly the traditional chapter/topic ordering in quantum mechanics books. For each chapter
there are two classes of problems: in order of appearance in a chapter they are: (1) multiple-choice
problems and (2) full-answer problems. Almost all the problems have complete suggested answers.
The answers may be the greatest benefit of QMP. The questions and answers can be posted on the
web in pdf format.

The problems have been suggested by many sources, but have all been written by me. Given
that the ideas for problems are the common coin of the realm, I prefer to call my versions of the
problems redactions. Instructors, however, might well wish to find solutions to particular problems
from well known texts. Therefore, T give the suggesting source (when there is one or when T recall
what it was) by a reference code on the extra keyword line: e.g., (Gr-10:1.1) stands for Griffiths,
p- 10, problem 1.1. Caveat: my redaction and the suggesting source problem will not in general
correspond perfectly or even closely in some cases. The references for the source texts and other
references follow the contents. A general citation is usually, e.g., Ar-400 for Arfken, p. 400.

At the end of the book are three appendices. The first is set of review problems anent matrices
and determinants. The second is an equation sheet suitable to give to students as a test aid and a
review sheet. The third is a set of answer tables for multiple choice questions.

Quantum Mechanics Problems is a book in progress. There are gaps in the coverage and the
ordering of the problems by chapters is not yet final. User instructors can, of course, add and modify
as they list.

Everything is written in plain TEX in my own idiosyncratic style. The questions are all have
codes and keywords for easy selection electronically or by hand. A fortran program for selecting
the problems and outputting them in quiz, assignment, and test formats is also available. Note the
quiz, etc. creation procedure is a bit clonky, but it works. User instructors could easily construct
their own programs for problem selection.

I would like to thank the Department of Physics & Health Physics of Idaho State University
for its support for this work. Thanks also to the students who helped flight-test the problems.
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Chapt. 1 Classical Physics in Trouble

Multiple-Choice Problems

001 gmult 00100 1 1 3 easy memory: quantum mechanics
1. The physical theory that deals mainly with microscopic phenomena is:

a) quartz mechanics.

) quarks mechanics.

) quantum mechanics.

) quantum jump mechanics.
) quasi-mechanics.

b
c
d

€

001 gmult 00200 1 1 1 easy memory: photon energy
2. The photon, the quantum of electromagnetic radiation, has ENERGY:

a) hf = hw.

001 gmult 00300 1 1 4 easy memory: photoelectric effect
3. A key piece of evidence for the wave-particle duality of light is:

a) the photograph effect.

the Maxwell’s electrodynamics as summarized in the four Maxwell’s equations.
the frequency of red light.

the photoelectric effect.

the photomagnetic effect.

b)
c)
d)
)

€

001 gmult 00400 1 1 1 easy memory: Compton effect
4. Einstein predicted and Compton proved that photons:

a) have linear momentum.

do not have linear momentum.

sometimes have linear momentum.

both have and do not have linear momentum at the same time.
neither have nor have not linear momentum.

b)
c)
d)
)

@

001 gmult 00500 1 4 3 easy deducto-memory: Bohr atom
5. “Let’s play Jeopardy! For $100, the answer is: This model of an atom is of historical and
pedagogical interest, but it is of no use in modern practical calculations and from the modern
standpoint is probably misleading rather than insight-giving.”

a) What is Shrodinger’s model of the hydrogen atom, Alex?
b) What the Thomas-Fermi model of a many electron atom, Alex?
c) What is Bohr’s model of the hydrogen atom, Alex?

1



2 Chapt. 1 Classical Physics in Trouble

d) What is the liquid drop model of the atom, Alex?
e) What is model hydrogen atom of Leucippos and Democritos’s , Alex?

001 gmult 00550 1 1 4 easy memory: hydrogenic energy formula

6.

The formula
1 VA

2 2
E,=——-m.,c’a*—
¢ n2

gives the main energy levels of:

a) positronium.
magnesium deboride.

) the hydrogen molecule.
) the hydrogenic atom.

) the infinite square well.

2oz

[¢]

001 gmult 00600 1 1 5 easy memory: Greek atomists

7.

The atomic theory was first proposed by the ancient Greeks Leucippos (5th century BC) and
Democritos (5th to 4th century BC: he reputedly lived to be 100). The term atomos means
uncut: e.g., the grass is atomos. The atomists started from a philosophical position that there
had to be something to give stability to nature: obviously the macroscopic world was full of
change: therefore what was imperishable or uncutable—atoms—must be below perception. The
modern quantum theory does indeed bear out some of their thinking. Microscopic particles can
be created and destroyed, of course, but the members of a class are much more identical than
macroscopic objects can ever be: fundamental particles like electrons and quarks are thought
to be absolutely identical. Thus the forms particles can take are apparently eternal: a hydrogen
atom today is the same in theory as one at any time in universal history.

The atomists tried to work out an atomic understanding of existence in general. For
instance they constructed a cosmology using atoms that bears some resemblance to modern
eternal inflationary cosmology in which there are infinitely many universes that are born out
of primordial space-time foam and perhaps return to that—foam to foam. Unfortunately, the
atomists got off on the wrong foot on the shape of the Earth: they were still flat Earthers when
the round Earth theory was being established. Quite obviously to us, the atomists were badly
non-experimental. Much of their thinking can be called rational myth. To a degree they were
lucky in happening to be attracted to an essentially right idea.

The atomists were eventually stigmatized as atheists: they did not deny that gods exist, but
didn’t leave anything for the gods to do. This may have been their downfall. The more orthodox
and popular philosophies of Plato, Aristotle, and the Stoics rejected atomism probably, among
other things, for its seeming atheism. Christianity followed suit in this regard. The writings of
the atomists only exist in fragments—and Democritos seems to have been as famous as Plato
in his day. The Epicurean philosophers adopted atomism, but also suffered the stigmatization
as atheists—and also hedonists who are, of course, the worst. But the atom idea lingered on
through the centuries: Leucippos and Democritus, Epicurus, Lucretius (his surviving poem De
Rerum Natura [On Nature] expounds atomism), Gassendi (17th century), Newton, Dalton: the
chain is unbroken: it is not true that modern atomism has no historical or essential connection
to ancient atomism.

A good account of ancient atomism can be found in David Furley’s The Greek Cosmologists.
Now, without recurring to the top of this preamble, atomism was invented in:

) the early 19th century.

) the 17th century by Gassendi.
c) the 10th century AD.

) the 5th century AD.
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e) the 5th century BC.

001 gmult 00800 1 1 1 easy memory: causality, relativity
8. Einstein ruled out faster than light signaling because:

) it would cause irresolvable causality paradoxes.

it would not cause irresolvable causality paradoxes.

it led to irresolvable paradoxes in quantum mechanics.
it would destroy the universe.

it had been experimentally verified.

b
o)
Q)
)

[¢]

001 gmult 00900 1 1 3 easy memory: EPR paradox
9. The Einstein-Podolsky-Rosen (EPR) paradox was proposed to show that ordinary quantum
mechanics implied superluminal signaling and therefore was:

) more or less correct.

) absolutely correct.

) defective.

) wrong in all its predictions.

) never wrong in its predictions.

a
b
c
d

[¢]

001 gmult 01000 1 4 3 easy deducto-memory: Bell’s theorem

10. “Let’s play Jeopardy! For $100, the answer is: This theorem (if it is indeed inescapably correct)
and the subsequent experiments on the effect the theorem dealt with show that quantum
mechanical signaling exceeds the speed of light.”

a) What is Dark’s theorem, Alex?

) What is Midnight’s theorem, Alex?
) What is Bell’s theorem, Alex?

) What is Book’s theorem, Alex?

) What is Candle’s theorem, Alex?

b
c
d

€

Full-Answer Problems

001 gfull 00500 3 5 0 tough thinking: Rutherford’s nucleus
Extra keywords: (HRW-977:62P)

1. Rutherford discovered the nucleus in 1911 by bombarding metal foils with alpha particles now
known to be helium nuclei (atomic mass 4.0026). An alpha particle has positive charge 2e. He
expected the alpha particles to pass right through the foils with only small deviations. Most did,
but some scattered off a very large angles. Using a classical particle picture of the alpha particles
and the entities they were scattering off of he came to the conclusion that atoms contained most
of their mass and positive charge inside a region with a size scale of ~ 10715 m = 1fm: this 1075
times smaller than the atomic size. (Note fm stands officially for femtometer, but physicists
call this unit a fermi.) Rutherford concluded that there must be a dense little core to an atom:
the nucleus.

a) Why did the alpha particles scatter off the nucleus, but not off the electrons? HINTS:
Think dense core and diffuse cloud. What is the force causing the scattering?

b) If the alpha particles have kinetic energy 7.5 Mev, what is their de Broglie wavelength?

c) The closest approach of the alpha particles to the nucleus was of order 30 fm. Would the
wave nature of the alpha particles have had any effect? Note the wave-particle duality was
not even suspected for the massive particles in 1911.
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001 gfull 01000 3 5 0 tough thinking: black-body radiation, Wien law
Extra keywords: (Le-62) gives a sketch of the derivations
2. Black-body radiation posed a considerable challenge to classical physics which it was partially

able to meet. Let’s see how far we can get from a classical, or at least semi-classical,
thermodynamic equilibrium analysis.

a)

Let Uy be the radiation energy density per wavelength of a thermodynamic equilibrium
radiation field trapped in some kind of cavity. The adjective thermodynamic equilibrium
implies that the field is homogenous and isotropic. I think Hohlraum was the traditional
name for such a cavity. Let’s call the field a photon gas and be done with it—anachronism
be darned. Since the radiation field is isotropic, the specific intensity is then given by

Bu;m::%%, (Pr.1)

where ¢ is of course the speed of light. Specific intensity is radiation flux per wavelength
per solid angle. From special relativity (although there may be some legitimately classical
way of getting it), the momentum flux associated with a specific intensity is just B(A, T)/c.
Recall the rest plus kinetic energy of a particle is given by

E = y/p%e? + mic* (Pr.2)

where p is momentum and myg is rest mass. From an integral find the expression for the
radiation pressure on a specularly reflecting surface:

1

where p is now pressure and U is the wavelength-integrated radiation density. Argue that
the same pressure applies even if the surface is only partially reflecting or pure blackbody
provided the the radiation field and the surface are in thermodynamic equilibrium. HINT:
Remember to account for angle of incidence and reflection.

Now we can utilize a few classical thermodynamic results to show that
U=al*, (Pr.4)

where a is a radiation constant related to the Stefan-Boltzmann constant ¢ = 5.67051 x
10% ergs/(cm? K*) and T is Kelvin temperature, of course. The relation between a and o
follows from the find the flux leaking out a small hole in the Hohlraum:

1
cU ca
F =27 —pdp=—T? Pr5
T/o hdn =T, (Pr.5)

where p is the cosine of the angle to the normal of the surface where the hole is. One sees
that & = ca/4. Classically a cannot be calculated theoretically; in quantum mechanical
statistical mechanics a can be derived. The proportionality U o T% can, however, be
derived classically. Recall the 1st law of thermodynamics:

dE =TdS —pdV | (Pr.6)

where F is internal energy, S is entropy, and V' is volume. Note that

OF OF
- =T d R = — Pr.
(as)v an (av)S P (Pr.7)
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where the subscripts indicate the variables held constant. Tt follows from calculus (assuming

well-behaved functions) that
dp oT
hd - _ [ Z= Pr.8
(3),= (&), )

The last relation is one of Maxwell’s four thermodynamic relations—Newton did things in
threes; Maxwell in fours. Note that £ = UV for a radiation field. Now go to it: show
U o T

As a by-product of the part (b) answer, you should have found that
T V™3 (Pr.9)

for a quasistatic adiabatic process with the photon gas. (Find it now if somehow you missed
it in the part (b) answer.) Assume you have a perfectly reflecting Hohlraum that you expand
homologously by a scaling factor f(¢), where ¢ is time. Thus at any time ¢ any length ¢ between
physical points on the walls in the system is given by

0= f(t)to (Pr.10)

where £ was the physical length at tq when f(t¢) = 1. Find out how 7', U, UdV, and FE scale
with f(#). What happens to the lost internal energy? HINT: This is easy.

Consider the process described in the part (c¢) and show that
A=A f(?) (Pr.11)

for each specific intensity beam. Note you can use the non-relativistic Doppler effect since the
velocity shift between scatterings off the walls is vanishingly small in the quasistatic limit.

For the same system as in part (c) show that
B\, T)d\dV = f(t)"' B(Xo, To) dXo dVy . (Pr.12)

Then show that equation (Pr.12) leads naturally (if not absolutely necessarily so far as I can
see) to the prescription for black-body specific intensity

B\, T) =A""g(z) = <Z) g(z) , (Pr.13)

X

where

z = AT (Pr.14)

and g(z) is a universal function that cannot be determined from classical theory.
Equation (Pr.13) is sometimes called Wien’s displacement law. However the name Wien’s
displacement law is more usually (T think) reserved for the immediate result that for fixed T
the the maximum of the black-body specific intensity (i.e., the maximum of z=5g(z)) occurs at
a wavelength given by

A= "”rfnrax , (Pr.15)

where Zpmay is the global universal location of maximum for the universal function g(z). It was
empirically known that black-body radiation had only one maximum with wavelength, and so
this corresponds to xpax. I think classically z,.x has to be determined empirically.

Wien’s radiation law was I believe a fit to the observations of Wien’s displacement law.

This law is .
T k
B\T) =k (-) exp <——2> : (Pr.16)
xz

X
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where k1 and k2 had to be determined from the fit. Wien’s law works well for short wavelengths
(z £ Zmax), but gives a poorish fit to the long wavelengths (z 2 #max) (Pa-190, but note the z
there is the inverse of the z here aside from a constant). The Rayleigh-Jeans law derived from
a rather different classical starting picture gave a good fit to long wavelengths (z >> Zmax),
but failed badly at shorter wavelengths (Pa-190, but note the z there is the inverse of the x
here aside from a constant). In fact the Rayleigh-Jeans law goes to inifinity as z goes to zero
and the total energy in a Rayleigh-Jeans radiation field is infinite (Le-64): this is sometimes
called the ultraviolet catastrophe (BFG-106). The correct black-body specific intensity law was
derived from a primitive quantum theory by Max Planck in 1900 (BFG-106). Planck obtained
an empirically excellent fit to the black-body specific intensity and then was able to derive it
from his quantum hypothesis. The Rayleigh-Jeans and Planck laws are the subject for another
question.

001 gfull 01100 2 5 0 moderate thinking: Bohr atom

3.

In 1913, Niels Bohr presented his model of the hydrogen atom which was quickly generalized
to the hydrogenic atom (i.e., the one-electron atom of any nuclear charge 7). This model
correctly gives the main hydrogenic atom energy levels and consists of a mixture of quantum
mechanical and classical ideas. It is historically important for showing that quantization is
somehow important in atomic structure and pedagogically it is of interest since it shows how
simple theorizing can be done. But the model is, in fact, incorrect and from the modern
perspective probably even misleading about the quantum mechanical nature of the atom. It is
partially an accident of nature that it exists to be found. Only partially an accident since it
does contain correct ingredients. And it is no accident that Bohr found it.

Bohr knew what he wanted: a model that would successfully predict the hydrogen atom
spectrum which is a line spectrum showing emission at fixed frequencies. He knew from
Einstein’s photoelectric effect theory that electromagnetic radiation energy was quantized in
amounts hv where h = 6.626 x 10~27 ergs was Planck’s constant (which was introduced along
with the quantization notion to explain black-body radiation in 1900) and v was frequency of the
quantum of radiation. He recognized that Planck’s constant had units of angular momentum.
He knew from Rutherford’s nuclear model of the atom that the positive charge of an atom was
concentrated in region that was much smaller than the atom size and that almost all the mass
of the atom was in the nucleus. He knew that there were negative electrons in atoms and they
were much less massive than the nucleus. He knew the structure of atoms was stable somehow.
By a judicious mixture of classical electromagnetism, classical dynamics, and quantum ideas
he found his model. A more sophisticated mixture of these concepts would lead to modern
quantum mechanics.

Let’s see if we can follow the steps of the ideal Bohr—not the Bohr of history. NOTE: This
a semi-classical question: Bohr, ideal or otherwise, knew nothing of the Schrodinger equation

in 1913.

a) Bohr thought to build the electron system about the nucleus based on the electrostatic
inverse square law with the electron system supported against collapse onto the nucleus by
kinetic energy. The nucleus was known to be much more massive than the electon, and
so could be considered an immobile center of force. The electron—there i1s only one in a
hydrogenic atom—was taken to be in orbit about the nucleus. Circular orbits seemed the
simplest way to proceed. The electrostatic force law (in Gaussian cgs units) in scalar form
for a circular orbit is

where Ze is the nuclear charge, e is the electron charge, and r is the radial distance between
nucleus and electron. What is the potential energy of the electron with the zero of potential
energy for the electron at infinity as usual? HINT: If the result isn’t obvious, you can get
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it using the work-potential energy formula:

V:—/ﬁ~d?+constant.

b) Using the centripetal force law (which is really f = ma for uniform circular motion)

find an expression for the classical kinetic energy 7' of the electron in terms of Z, e, and r
alone.

c) What is the total energy of the electron in the orbit?

d) Classically an accelerating charge radiates. This seemed well established experimentally in
Bohr’s time. But an orbiting electron is accelerating, and so should lose energy continuously
until it collapses into the nucleus: this catastrophe obviously doesn’t happen. Electrons
do not collapse into the nucleus. Also they radiate only at fixed frequencies which means
fixed quantum energies by Einstein’s photoelectric effect theory. So Bohr postulated that
the electron could only be in certain orbits which he called stationary states and that the
electron in a stationary state did not radiate. Only on transitions between stationary states
was there an emission of radiation in a quantum or (to use an anachronism) a photon. To
get the fixed energies of emission only certain energies were allowed for the stationary
states. But the emitted photons didn’t come out with equally spaced energies: ergo the
orbits couldn’t be equally spaced in energy. From the fact that Planck’s constant A has
units of angular momentum, Bohr hypothesized the orbits were quantized in equally spaced
amounts of angular momentum. But h was not the spacing that worked. Probably after
a bit of fooling around, Bohr found that h/(27) or, as we now write it, 7 was the spacing
that gave the right answer. The allowed angular momenta were given by

L=nh,

where n is any positive non-zero integer. The n was the first quantum number: we now call
it the principal quantum number. It indeed determines the main spacing of the hydrogenic
energy levels. Rewrite kinetic energy 7" in terms of n7t and solve for an expression for r in
terms n, fi, Ze? and m only. HINT: Recall the classical expression for angular momentum
of particle in a circular orbit is L = mrv.

e) Using the formula for r from the part (d) answer write an expression for the energy of a
stationary state in terms of m, ¢, @, Z, and n only. The ¢ is the speed of light and the «
is the fine structure constant: in Gaussian cgs units

e2

:%.

[0

(Real physicists use Gaussian cgs units). This formula for orbit energy turns out to be
correct for the spacing of the main energy levels or shells as we would now call them. But
a shell doesn’t, in fact, have angular momentum n7: it consists of has orbitals (as we now
call them) with angular momenta in the range [0,n — 1] in units of & (e.g., Gr-139).

001 gfull 01300 2 3 0 moderate math: Compton scattering
Extra keywords: (Ha-323:1.1)
4. In 1916, Einstein proposed that photons carry momentum according to the following formula:
h

p:Xa
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where h is Planck’s constant and A is the photon wavelength (HRW-959). In 1924, Louis
de Broglie applied the formula in inverse form to give a wavelength for massive particles: i.e.,

h
A=-—

which is called the de Broglie wavelength formula. In 1923, Arthur Compton carried out
experiments with X-rays scattering off electrons which showed that Einstein’s formula correctly
accounted for the wavelength shift on scattering. The Compton shift formula is

AX = Ac(1 —cosf) ,

where Ac = h/(m.c) = 0.02426 A is the Compton wavelength (with m, being the electron mass)
and 6 is the scattering angle (i.e., the angle between incident and scattering directions). This
formula can be derived from Einstein’s formula using a relativistic particle collisional picture.

a) Assuming an electron starts at rest and is hit head-on by a photon “particle and the
collision is elastic,” what conservation law expressions can be used to relate incoming
photon momentum p;, outgoing photon momentum ps, outgoing electron momentum pe,
photon scattering angle #, and electron scattering angle ¢? Can one solve for the four
outgoing quantities given the initial conditions? HINT: Recall that the relativistic kinetic
energy of a particle is given by

==/ (pc)? + (mgc?)? — moe’ = (v — 1)m062 ,

where p is momentum and mg is the rest mass.
b) Solve for ps in terms of p; and 6 only.
c) Now using Einstein wavelength formula, find Compton’s formula.

d) Sketch the behavior of AX as a function of . What is the shift formulain the non-relativistic
limit: 1.e., when A — oco.

001 gfull 00150 3 5 0 tough thinking: Einstein, Runyon
5. “God does not play dice” —Einstein. Discuss.
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Multiple-Choice Problems

002 gmult 00080 1 1 2 easy memory: wave-particle duality
1. The principle that all microscopic physical entities have both wave and particle properties is

called:

a) the wave-particle singularity.
b) the wave-particle duality.

c) the wave-particle triality.

d) the wave-particle infinality.

)

e) the wave-particle nullility.

002 gmult 00090 1 4 5 easy deducto-memory: Schrodinger eqn
2. “Let’s play Jeopardy! For $100, the answer is: The equation that governs the time evolution of
quantum mechanical systems in the non-relativistic approximation.”

a) What is ﬁnet = md, Alex?
b) What are Maxwell’s equations, Alex?
c) What are Einstein’s field equations of general relativity, Alex?
d) What is the Dirac equation, Alex?
)

e) What is Schrodinger’s equation, Alex?

002 gmult 00100 1 1 1 easy memory: Schrodinger’s eqn. compact form
3. The full Schrodinger’s equation in compact form is:

a) HU = ifi(0%/dt).
HY = 7(3¥/dt).
HY = i(0%/dt).
HY = ifi(0%/dz).
H='0 = it (9T/0t).

b
c
d

a

)
)
)
)

002 gmult 00200 1 1 5 easy memory: probability of finding particle in dx
4. The probability of finding a particle in differential region dz is:

a) U(z,t)de.

t)*d
z,1)* U (z,t)dr = |¥(z,t)|* d=.

002 gmult 00210 1 1 1 easy memory: QM probability density
5. In the statistical interpretation of wave function ¥, |¥|? is:

a) a probability density.

b) a probability amplitude.
c) 1.
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d) 0.
e) a negative probability.

002 gmult 00300 1 1 3 easy memory: expectation value defined
6. The expectation value of a dynamical quantity is:

a) the most likely value of the quantity given by the probability density: i.e., the mode of the
probability density.

) the median value of the quantity given by the probability density.

c) the mean value of the quantity given by the probability density.

d) any value you happen to measure.
) the time average of the quantity.

=3

€

002 gmult 00310 1 1 3 easy memory: expectation value expression
7. The expectation value of operator () for some wave function is often written:

a) @
b) HQ(.
c) (@)
d) (£(Q))
) F(@).

@

002 gmult 00400 1 1 4 easy memory: normalization requirement
8. A physical requirement on wave functions is that they should be:

a) reliable

b) friable.

c) certifiable.
d) normalizable.
e) retriable.

002 gmult 00500 1 1 2 easy memory: the momentum operator defined
9. The momentum operator in one-dimension is

a) ﬁ;—x.
b) Eaa_x
)+ o
d) #2.

002 gmult 00510 1 1 4 easy memory: constant of the motion
10. If an operator has no explicit time dependence and it commutes with the Hamiltonian, then it
is a quantum mechanical:

) fudge factor.

dynamical variable.
universal constant.
constant of the motion.
constant of the stagnation.

B
c)
d)
)

@

002 gmult 00520 1 4 5 easy deducto-memory: Ehrenfest’s theorem
11. Ehrenfest’s theorem partially shows the connection between quantum mechanics and:

a) photonics
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=)

) electronics.

c) special relativity.

d) general relativity.
)

e) classical mechanics.

002 gmult 00520 1 4 5 easy deducto-memory: Heisenberg uncertainty
12. “Let’s play Jeopardy! For $100, the answer is: It describes a fundamental limitation on the
accuracy with which we can know position and momentum simultaneously.”

a) What is Tarkovsky’s doubtful thesis, Alex?

What is Rublev’s ambiguous postulate, Alex?
What is Kelvin’s vague zeroth law, Alex?

What is Schrodinger’s wild expostulate, Alex?
What is Heisenberg’s uncertainty principle, Alex?

b)
)
)
)

€

002 gmult 00600 1 4 5 easy deducto-memory: uncertainty principle
13. “Let’s play Jeopardy! For $100, the answer is: 0,0, > 7/2.

a) What is an equality, Alex?

b) What is a standard deviation, Alex?

c) What is the Heisenberg CERTAINTY principle, Alex?

d) What is the Cosmological principle, Alex?

e) What is the Heisenberg UNCERTAINTY principle, Alex?

002 gmult 00700 1 1 4 easy memory: Schr. eqn. separation of variables
14. The time-independent Schrodinger equation is obtained from the full Schrodinger equation by:

a) colloquialism.
solution for eigenfunctions.

=

¢l

separation of the  and y variables.

o,

[¢]

)
separation of the space and time variables.
P P
) expansion.

002 gmult 00720 1 1 1 easy memory: stationary state
15. A system in a stationary state will:

a) not evolve in time.
evolve 1n time.

=

both evolve and not evolve in time.

e

jal

)
) occasionally evolve in time.
)

@

violate the Heisenberg uncertainty principle.

002 gmult 00800 1 4 2 easy deducto-memory: orthogonality property
16. For an eigenproblem, one can always find a complete set of eigenfunctions that are:

a) independent of the z-coordinate.
orthonormal.

=

) collinear.
) pathological.
) righteous.

[aFpye}

@

002 gmult 00900 1 4 1 easy deducto-memory: macro object in stationary state

17. “Let’s play Jeopardy! For $100, the answer is: A state that no macroscopic system can be
in although some might argue that Bose-Einstein condensates and other special systems like
superconductors and superfluids can be sort of.”
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a

b

d

€

)
)
c)
)
)

What is a stationary state, Alex?
What is an accelerating state, Alex?
What is a state of the Union, Alex?
What is a state of being, Alex?
What is a state of mind, Alex?

002 gmult 01000 1 1 5 easy memory: stationary state is radical
18. A stationary state is:

a)

=)

C

o,

)
)
)
)

€

just a special kind of classical state.

more or less a kind of classical state.

voluntarily a classical state.

was originally not a classical state, but grew into one.
radically unlike a classical state.

002 gmult 01100 1 1 4 easy memory: macro system in a stationary state

19. Except for certain special cases (superconductors, superfluids, and Bose-Einstein condensates),
no macroscopic system can be in a:

e =R

o,

)
)
)
)
)

€

mixed state.
vastly mixed state.
classical state.
stationary state.
state of the union.

002 gmult 01200 1 1 2 easy memory: transitions
20. Transitions between stationary states (sometimes, but actually rarely, called quantum jumps)

are:

only collisional.

both collisional and radiative.
only radiative.

neither collisional nor radiative.

only collisional to higher energy stationary states and only radiative to lower energy
stationary states.

002 gmult 01300 1 4 3 easy deducto-memory: lasers, stimulated emission
21. “Let’s play Jeopardy! For $100, the answer is: It is the basis for lasers and masers.”

a)
b)
c)
d)

)

€

What spontaneous radiative emission, Alex?
What desultory radiative emission, Alex?
What stimulated radiative emission, Alex?
What the laser force, Alex?

What the laser potential, Alex?

002 gmult 01400 1 4 4 easy deducto-memory: operators and Sch. eqn.
22. “Let’s play Jeopardy! For $100, the answer is: An equation that must hold in order for the

non-

relativistic Hamiltonian operator and the operator i719/dt to both represent energy in the

evaluation of the energy expectation value for a wave function ¥(z,t).”

a)
b)
c)
d)

)

€

What is the continuity equation, Alex?
What is the Laplace equation, Alex?
What is Newton’s law, Alex?

What is Schrodinger’s equation, Alex?
What is Hamiton’s equation, Alex?
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002 gmult 02000 2 1 4 moderate memory: does gravity quantize
Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297
23. Can the gravitational potential cause quantization of energy states?

a) No.

b) Tt is completely uncertain.

) Theoretically yes, but experimentally no.

d) Experimental evidence to date (post-2001) suggests it can.
) In principle there is no way of telling.

C

€

Full-Answer Problems

002 gfull 00090 1 5 0 easy thinking: what is a wave function?
1. What is a wave function? (Representative general symbol ¥(7,1)).

002 gfull 00100 1 3 0 easy math: probability and age distribution
Extra keywords: (Gr-10:1.1)
2. Given the following age distribution, compute its the normalization (i.e., the factor that
normalizes the distribution), mean, variance, and standard deviation. Also give the mode
(i.e., the age with highest frequency) and median.

Table: Age Distribution

Age Frequency
(years)

14
15
16
22
24
25

LN N O — N

002 gfull 00200 2 3 0 moderate math: probability needle 1
Extra keywords: (Gr-10:1.3) probability and continuous variables
3. An indicator needle on a semi-circular scale (e.g., like a needle on car speedometer) bounces
around and comes to rest with equal probability at any angle 6 in the interval [0, 7].

a) Give the probability density p(f) and sketch a plot of it.

b) Compute the Ist and 2nd moments of the distribution (i.e., (#) and <H2>) and the variance
and standard deviation.

c¢) Compute (sin ), (cos @), (sin? ), and {cos? 6).

002 gfull 00210 3 5 0 tough thinking: 2-variable probability density
Extra keywords: (Gr-11:1.5) dropping a needle on lines
4. Nun fur eine kleine teufelische problem. Say you drop at random with equal likelihood of landing
in any orientation and location a needle of length ¢ onto a sheet of paper with parallel lines a
distance £ apart. What is the probability of the needle crossing (or at least touching) a line?
Let’s be nice this time and break it down.
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a)

b)

Mentally mark one end of needle red. Then note that really we only need to consider one
band on the paper between two parallel lines and the case where the red end lies between
them as a given. Why is this so?

So now we consider that the red end lands in one band at a point & between —¢/2 and £/2.
Note we put the origin at the center since almost always one ought to exploit symmetry.
What is the probability density for the red end to land anywhere in the band? What is
the probability density for the needle for the orientation of the needle in § measured from
the z-axis? Why do you only need to consider 8 € [0, 7]?

Now we don’t care about the orientation itself really: we just care about it’s projection
on the z-axis. Call that projection z’. What is the probability density for z'? What is
the range of z’ allowed? HINT: The probability of landing in df and a corresponding dz’
must be equal.

The joint probability density for z and z’ is
p@)ple’)

You now have to integrate up all the probability for 2’ + # > £/2 and for ' + z < —£/2
and sum those two probabilities. The sum 1s the solution probability of course.

002 gfull 00220 1 3 0 easy math: Gaussian probability density
Extra keywords: (Gr-11:1.6)
5. Consider the Gaussian probability density

pla) = AeMe=a)”,

where A, a, and X\ are constants.

a)
b)

c)

Determine the normalization constant A.

The nth moment of a probability density is defined by

Determine the Oth, 1st, and 2nd moments of the Gaussian probability density.

2

For the Gaussian probability density determine the mean, mode, mediam, variance ¢, and

standard deviation (or dispersion) o.

d) Sketch the Gaussian probability density.

002 gfull 00300 2 3 0 moderate math: analyzing a triangular hat wave function
Extra keywords: (Gr-13:1.7)
6. At some time a triangular hat wave function is given by

, z € [0, a];

U(z,t) = A(b_x), z € [a,b];

b—a

0 otherwise,

where A, a, and b are constants.

a) Sketch ¥ and locate most probable location for a particle (i.e., the mode of the |¥|?

probability distribution).
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b) Determine the normalization constant A in terms of a and b. Recall the difference between
wave function and probability distribution here and in the later parts of this question.

c) What are the probabilities of being found left and right of a, respectively?
d) What is {(x)?

002 gfull 00310 2 5 0 moderate thinking: probability conservation
Extra keywords: (Gr-13:1.9) probability current
7. The expression for the probability that a particle is in the region [—oo, z] (i.e., what one can
call the probability function) is

P(z,t) = /17 | W (2 t)|* da’ .

— 00

a) Find an explicit, non-integral expression for 9P (z,t)/0t given that the wave function is
normalizable at time ¢. HINT: Make use of the physics: i.e., the Schrodinger equation
itself. This is a common trick in quantum mechanics and, mutatis mutandis, throughout
physics.

b) If the wave function is normalizable at time ¢, show that P (oo, ) is a constant with respect
to time: i.e., total probability is conserved.

c¢) The probability current is defined

OP(z,1)
Argue that this is a sensible definition.
d) Given '
U(z,t) = (x)e ™t

what can one say about the probability density |¥|?, the probability function P(z,t), and
the probability current J(z,?)?

002 gfull 00320 3 5 0 tough thinking: general time evolution equation
8. By postulate the expectation value of an operator () is given by

Q) = /oo T QU dz .

— 00

a) Write down the explicit expression for

«Q)
-

Recall @ in general can depend on time too.

b) Now use the Schrédinger equation

o
HY =ih—
ot
to eliminate partial time derivatives where possible in the expression for d{Q)/dt.
Remember how complex values behave when complex conjugated. You should use the
angle bracket form for expectation values to simplify the expression where possible.
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¢) The commutator of two operators A and B is defined by
[A,B] = AB — BA ,

where it is always understood that the commutator and operators are acting on an implicit
general function to the right. If you have trouble initially remembering the understood
condition, you can write

(A, Blf = (AB - BA)f ,

where f is an explicit general function. Operators don’t in general commute: i.e.,

[A,B] = AB — BA # 0 in general. Prove

ZAi,ZBj => [4:,Bj].

]

d) Now show that d{Q)/dt can be written in terms of (i{[H,Q]). The resulting important
expression oddly enough doesn’t seem to have a common name. I just call it the general
time evolution formula. HINTS: First, V and ¥* do commute. Second, the other part of
the Hamiltonian operator

7 o2
 2m Ox?
can be put in the right place using integration by parts and the normalization condition
on the wave function. Note 7" turns out to be the kinetic energy operator.

e) If d{Q)/dt = 0, then @ is a quantum mechanical constant of the motion. Show that the
operator Q = 1 (i.e., the unit operator) is a constant of the motion. What is (1)?

f) Find the expression for d{z}/dt in terms of what we are led to postulate as the momentum
operator

_h o

=T

The position operator z should be eliminated from the expression. HINTS: Note V and
z commute, but 7" and z do not. The biderivative formula might be of use in evaluating

the commutator [T, z]:
dn(fg) B n n dkf dn—kg
dezn kz_% k) dzk den—F -~

p

002 gfull 00330 3 5 0 tough thinking: Ehrenfest’s theorem
Extra keywords: (Gr-17:1.12) Ehrenfest formulae
9. In one dimension Ehrenfest’s theorem is usually taken to consist of two formulae:

and

a) From the general time evolution formula prove the 1st Ehrenfest formula. Recall the momentum
operator is postulated to be given by
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The biderivative formula might be of use in evaluating the commutator [T, z]:

d"(fg) B n n dkfdn—kg
dzn _I;) k /) dxk den—k ~

From the general time evolution formula prove the 2nd Ehrenfest formula. HINTS: Note that
[T,p] =0: i.e., T and p commute.

If you invoke the correspondence principle (which in this case means scrunch the non-zero
region of wave function into a macroscopic point or a Dirac-Delta-like function), what do the
Ehrenfest formulae become in the macroscopic limit where (z) becomes z, etc? What does this
result imply?

If one combines the two Ehrenfest formulae, one gets

oL (5)

which looks very like Newton’s 2nd law in its ' = ma form for a force given by a potential. By
the correspondance priniciple it does become the 2nd law in the macroscopic limit. However,
an interesting question arises—well maybe not all that interesing. Does the {(z) (which we could
call the center of the wave packet) actually obey Newton’s 2nd law according to the expression

) V()

dt o{x)

in general To disprove a general statement, all you need to do is find one counterexample.
Consider a potential of the form V(z) = Az, and show that in general the (z) doesn’t obey
Newton’s 2nd law in the form given. Then show that it does in three special cases of A.

002 gfull 00400 1 3 0 easy math: orthonormality leads to mean energy

10.

Extra keywords: (Gr-30:2.10)

You are given a complete set of orthonormal stationary states (i.e., energy eigenfunctions) {1, }
and a general wave equation ®(z,t) for the same system: i.e., ®(z,?) is determined by the same
Hamiltonian as the complete set. Find the general expression, simplified as far as possible, for
expectation value { H%) where £ is any positive (or zero) integer. Give the special cases for £ = 0,
1, and 2, and the expression for . HINTS: Use expansion and orthonormality. This should
be a very short answer: 3 or 4 lines.

002 gfull 00500 3 5 0 tough thinking: real eigen-energies

11.

Extra keywords: (Gr-24:2.1) and all real complete sets
There are a few simple theorems one can prove about stationary states and their eigen-energies.

a) Prove that eigen-energies must be real. HINT: Prove (H) is real for any state ¥ using
integration by parts. Note one has to use the full time dependent wave function for a general
state since the time dependence doesn’t cancel out of the expectation value integral.

b) The complete set of time-independent stationary states you get from a direct solution of
the Schrodinger equation may not be all pure real pure. But one can always construct from
this complete set another complete set that is all pure real and it is supposedly convenient
to do so sometimes—or at least it can be done as a mathematician would say. Show how
it can be done. HINTS: First note that complete sets are almost always assumed to
be minimum complete sets: i.e., each member of the set is independent of all the other
members, and thus cannot be constructed from any linear combination of the others. In
our discussions we always assume minimum complete sets.
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Consider a non-trivially complex solution 1;; of the eigenproblem
Hupij = Eitij

where the first subscript denotes energy level and the second the particular solution of that
energy level. (“Non-trivially” just means that 1;; isn’t just a real function times a complex
constant. What do you do with a trivially complex ;; by the way?) Take the complex
conjugate of the eigenproblem to find an independent 2nd solution 19,4 to it with the same
energy. The 2nd solution may or may not be part of your original subset with energy FE;.
If it is, then that is good. But if it isn’t one of the original subset with energy E;, you
should replace one of those with 1s,4. Since the original set was complete

YPand = Z cetbie

J2

where the summation only needs to run over the eigenfunctions with the same energy FE;.
This equation can be rearranged for any t;,, (except for t;; itself):

Yim = Z CozmWVie + cPang

J2

where the coefficients ¢; all had to be changed and ¢ is the coefficient needed for tgnq.
Since i, can be constructed using tsn4, it can be replaced by onq. If the number of
states with energy Fj is infinite, the replacement process becomes hairy, but let’s not worry
about that.

Now construct two pure real solutions from ;; and vanq from which 1;; and ang
can be re-constructed. These two new states then replace ;; and 2n4 in the subset with
energy F;. One can go on like that replacing two for two as long as you need to. Remember
the original set will in general be infinite, and one couldn’t have had them all explicitly
anyway.

002 gfull 00600 3 5 0 tough thinking: parity operator
12. The parity operator P (not to be confused with the momentum operator p) has the well defined,
but seemingly arbitrary, property that

for a 1-dimensional case which is all that we will consider in this problem.

a) Prove the parity operator is Hermitian. HINTS: Recall that the definition of the Hermitian
conjugate of operator @ is

(61Qlv) = (v|Q"#)" ,

where |¢) and |3)) are arbitrary kets. Note @ is Hermitian if QT = Q. Since the parity
operator (as defined here) only has meaning in the position representation that is where
the proof must be done: thus one must prove

/O; B(x) Py (z) dx = [/Z o(e) Po(e)da]

A transformation of the integration variable might help: remember z in the integrals is
just a dummy variable that can be represented by any symbol.

b) The eigenproblem for the parity operator is

Pf(l‘) = pvalf(x) )
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where pya) are the eigenvalues. Solve for the complete set of eigenvalues and identify those
classes of functions which are eigenfunctions of P. HINTS: Note it’s f(z) on the right
hand side not f(—z) since this is an eigenproblem, but Pf(z) = f(—z) too. Recall that
the eigenvalues of a Hermitian operator are pure real. Nothing forbids using the parity
operator twice. The parity operator commutes with constants of course:

Plef(z)] = cf(—z) = cPf(z) .

The set of all eigenfunctions of P is complete. Thus P qualifies as an “observable” in QM
jargon whether it can be observed or not: i.e., it is a Hermitian operator with a complete
set of eigenstates. Show that the set of eigenstates is complete: i.e., that any function
f(z) can be written in an expansion of P eigenfunctions. HINTS: From any f(z) one
can construct another function f(—z) and from f(z) and f(—z) one can construct two
eigenfunctions of P, and from those two eigenfunctions of P one can reconstruct ...

If f'(z) is the derivative of f(z), then Pf'(z) = f'(—=): i.e., the derivative of f(z) evaluated
at —z. But what is

—(Pf()] ?

Do P and §/9x commute? Do P and §?/9z? commute? HINT: You've heard of the chain
rule.

If the potential is even (i.e., V(z) = V(—=z)) do P and the Hamiltonian H commute?
HINTS: Recall PV (z)f(z) must be interpreted in QM (unless otherwise clarified) as P

acting on the function V() f(z) not on V(z) alone.

Given that P and H commute and ¢ (z) is a solution of the time-independent Schrédinger
equation, show that 1(—z) a solution too with the same eigen-energy as (z): i.e., ¥(z)
and t¥(—z) are degenerate eigenstates.

Given that P and H commute, show how one can construct from a given complete set
of energy eigenstates a complete set of energy eigenstates that are also eigenstates of the
parity operator. Assume that the original complete set contains both ¥(z) and ¥(—z):
this is not a requirement for finding a common complete set, but it is a simplification here.
HINT: Recall the part (c) answer.

002 gfull 01000 2 5 0 moderate thinking: energy and normalization
Extra keywords: (Gr-24:2.2) zero-point energy
13. Classically E > Vi for a particle in a conservative system.

a)

b)

Show that this classical result must be so. HINT: This shouldn’t be a from-first-principles
proof: it should be about one line.

The quantum mechanical analog is almost the same: E = (H) > Vinin for any state of the
system considered. Note the equality E = (H) = Vinin never holds quantum mechanically.
(There is an exception we will not consider in detail here. The lowest energy stationary
state of a system with periodic boundary conditions and a flat potential can have E = Vi, .
I don’t real full periodic boundary conditions can exist for a 3-dimensional system in 3-
d Euclidean space. But 1-d and 2-d systems with full periodic boundary conditions can
exist: e.g., a ring and a sphere.) Prove the inequality. HINTS: The key point is to show
that (T") > 0 for all physically allowed states (except for the periodic boundary conditions
exception). Use integration by parts.

Now show that result £ > Viyin implies E > Vipin, where E is any eigen-energy of the
system considered. Note the equality F = Vinin never holds quantum mechanically (except
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for the periodic boundary conditions exceptions). In an ordinary sense there is no rest state
for quantum mechanical particle. This lowest energy is often called the zero-point energy.

d) The E > Viin result for an eigen-energy in turn implies a 3rd result: any ideal measurement
always yields an energy greater than Vi, (except for the periodic boundary condition
exception). Prove this by reference to a quantum mechanical postulate.

002 gfull 00110 2 5 0 moderate thinking: beyond the classical turning points
14. The constant energy of a classical particle in a conservative system is given by

Since classically T' > 0 always, a bound particle is confined by surface defined by T" = 0 or
E = V(). The points constituting this surface are called the turning points: a name which
makes most sense in one dimension. Except for static cases where the turning point is trivially
the rest point (and maybe some other weird cases), the particle comes to rest only for an
instant at a turning point since the forces are unbalanced there. So it’s a place where a particle
“ponders for an instant before deciding where to go next”. The region with V' > E is classically
forbidden. Now for most quantum mechanical potential wells, the wave function extends beyond
the classical turning point surface into the classical forbidden zone and in fact usually goes to
zero only at infinity. If the potential becomes infinite somewhere (which is an idealization of
course), the wave function goes to zero: this happens for the infinite square well for instance.

Let’s write the 1-dimensional time-independent Schrodinger equation in the form

9%y  2m
927 = ?(V —E)y .

a) Now solve for ¢ for the region with V' > E with simplifying the assumption that V is
constant in this region.

b) Can the solutions be normalized?

c) Can the solutions constitute an entire wave function? Can they be part of a wave function?
In which regions?

d) Although we assumed constant V', what crudely is the behavior of the wave function likely
to be like the regions with V' > E.

e) For typical potentials considered at our level, qualitatively what is the likelihood of finding
the particle in the classically forbidden region? Why?

002 gfull 01100 3 5 0 tough thinking: 1-d non-degeneracy

15. If there are no internal degrees of freedom (e.g., spin) and no regions of continuous zero wave
function (ensured for example by infinite potential barriers), then 1-dimensional stationary
states (i.e., energy eigenstates) are non-degenerate. Prove this. Does the proof fail if the
stationary states have isolated zeros? What if they have continuous zeros? What happens if
there are internal degrees of freedom? HINTS: Assume you have two degenerate 1-d stationary
states for Hamiltonian H: ¥; and ¥,. Using the eigenproblem equation for each solution, prove
that ¥, 0, — U, U] equals a constant, that the constant must be zero, and consequently that
¥, and ¥s must be proportional. Consider the case of two isolated infinite square wells: are
the stationary states for these well degenerate?

002 gfull 01200 2 3 0 mod math: 3-d exponential wave function, probability
Extra keywords: (Col-342:6), 3-d wave function, probability, momentum representation
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16. Consider the 3-dimensional wave function

U(7) = Aexp

—vaw] ,

where the sum runs over the three Cartesian coordinates and the a;’s are real positive length
parameters.

a)

b)

Calculate the normalization factor A. HINT: Recall that the integrand is |¥(F)|? =
U (7)*¥ (7). 'm always forgetting this myself when the function is pure real and there is
no imaginary part to remind me of it.

Calculate the probability that a measurement of z; will yield a result between 0 and a;,
where i could be any of the three coordinates. HINT: There are no restrictions on values
of the other coordinates: they could be anything at all. Thus one just integrates over all
of those other coordinate positions remembering normalization of course.

Calculate the probability that simultaneous measurements of x; and z will yield results
in the ranges —a; to a; and —ay to ax, respectively. The j and k could be any pair of the
two coordinates. HINT: Remember the hint for part (b).

Calculate the probability that a measurment of momentum will yield a result in the element
dp; dp;j dpy, centered at the point p; = p; = 0, pr = f/ax. HINT: You will need to find
the momentum representation of the state.
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Multiple-Choice Problems

003 gmult 00050 1 1 1 easy memory: infinite square well
1. In quantum mechanics, the infinite square well can be regarded as the prototype of:

a) all bound systems.

) all unbound systems.

c¢) both bound and unbound systems.
)
)

=)

o,

neither bound nor unbound systems.

e) Prometheus unbound.

003 gmult 00100 2 4 2 moderate deducto-memory: infinite square well BCs
2. In the infinite square well problem, the wave function and its first spatial derivative are:

a) both continuous at the boundaries.

b) continuous and discontinuous at the boundaries, respectively.
c¢) both discontinuous at the boundaries.

d) discontinuous and continuous at the boundaries, respectively.
e) both infinite at the boundaries.

003 gmult 00300 1 1 3 easy memory: boundary conditions
3. Meeting the boundary conditions of quantum mechanical bound systems imposes:

a) Heisenberg’s uncertainty principle.
b) Schrodinger’s equation.

c¢) quantization.

d) a vector potential.

e) a time-dependent potential.

003 gmult 00400 1 1 5 easy memory: continuum of unbound states
4. At energies higher than the bound stationary states there:

a) are between one and several tens of unbound states.
b) are only two unbound states.

c) is a single unbound state.

d) are no states.

e) is a continuum of unbound states.

003 gmult 00500 1 4 2 easy deducto-memory: tunneling
5. “Let’s play Jeopardy! For $100, the answer is: This effect occurs because wave functions can

extend (in an exponentially decreasing way albeit) into the classically forbidden region: i.e., the
region where a classical particle would have negative kinetic energy.”

a) What is stimulated radiative emission, Alex?
b) What is quantum mechanical tunneling, Alex?
c) What is quantization, Alex?

22
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d) What is symmetrization, Alex?
e) What is normalization, Alex?

003 gmult 00600 2 1 2 moderate memory: Benzene ring model

6.

A simple model of the outer electronic structure of a benzene molecule is a 1-dimensional infinite
square well with:

a) vanishing boundary conditions.
) periodic boundary conditions.
c) aperiodic boundary conditions.

d) no boundary conditions.
) incorrect boundary conditions.

Full-Answer Problems

003 gfull 00100 2 3 0 moderate math: infinite square well in 1-d

1.

Extra keywords: infwell
You are given the time-independent Schrodinger equation

82

Hy(z) = “omaz T V(éb)] Y(z) = Ey(2)

and the infinite square well potential

V(z) = {20, z € [0,al;

otherwise.

What must the wave function be outside of the well in order to satisfy the Schrodinger equation?

Why?
What boundary conditions must the wave function satisfy?

Reduce Schrodinger’s equation inside the well to the CLASSICAL SHO equation with all the
constants combined into a wavenumber £.

Solve for the general solution for a single k& value. Why can’t we allow F < 0 solutions? Think
carefully: it’s not because k is imaginary when E < 0.

Use the boundary conditions to eliminate some of the solutions with £ > 0 and to impose
quantization on set of solutions. Note physically distinct solutions are indeterminate to within
a phase factor €' where ¢ is arbitrary. Give only the general formula and quantization rule for
physically distinct solutions.

Normalize the solutions.

Determine the general formula for the eigen-energies.

003 gfull 00400 2 3 0 moderate math: moments of infinite square well

2.

Extra keywords: (Gr-29:2.4)
Calculate (z), (z?), (p), (p?), 0w, and o, for the 1-dimensional infinite square well with range
[0, a]. Recall the general solution is

2 . 2 . /nm
P = \/gsm(km) = \/;sm (733) ,



24

Chapt. 3 Infinite Square Wells and Other Wells

where n = 1,2,3,... Also check that the Heisenberg uncertainty principle is satisfied.

003 gfull 00500 3 5 0 tough thinking: mixed infwell stationary states

3.

Extra keywords: (Gr-29:2.6)
A particle is in a mixed state in a I-dimensional infinite square well (an infwell) where the well
spans [0, a] and the solutions are in the standard form of Gr-26. At time zero the state is

¥(z,0) = A1 (2) +ha2(2)]
where 1 (2) and 15 () are the time-independent 1st and 2nd stationary states of the infwell.

a) Determine the normalization constant A. Remember the stationary states are orthonormal.
Also is the normalization a constant with time? Prove this from the general time evolution

equation
A9 (52 + iy

b) Now write down ¥(z,t). Give the argument for why it is the solution. As a simplfication
in the solution use

o 2m
where F is the ground state energy of the infwell.

E1 h T\ 2
W1 = — (a) y

c) Write out |¥(z,?)|? and simplify it so that it is clear that it is pure real. Make use Euler’s
formula: €' = cosz + ¢sinz. What’s different about our mixed state from a stationary
state?

d) Determine {z) for the mixed state. Note that the solution is oscillatory. What is the
angular frequency wq and amplitude of the oscillation. Why would you be wrong if your
amplitude was greater than a/2.

e) Determine (p) for the mixed state. As Peter Lorre (playing Dr. Einstein—Herman Einstein,
Heidelberg 1919) said in Arsenic and Old Lace “the quick way, Chonny.”

f) Determine (H) for the mixed state. How does it compare to £y and FE5?

g) Say a classical particle had kinetic energy equal to the energy (H) found in the part (f)
answer. The particle is bounces back and forth between the walls of the infwell. What
would its angular frequency be in terms of wy and the angular frequency found in the
part (d) answer.

003 gfull 01000 3 5 0 tough thinking: 3-d infinite cubical well

4.

Extra keywords: (Gr-124:4.2), separation of Schrodinger equation
Consider an infinite cubical well or particle-in-a-box system. The potential is

0, for z, y, and z in the range 0 to a;
o0, otherwise.

Ve =

The wave functions must be zero at the boundaries for an infinite well recall.

Solve for the stationary states from the 3-dimensional Schrodinger equation and find their
energies in terms of quantum numbers n;, ny, and n,. HINTS: Separate the Schrodinger
equation into z, y, and z components. Identify the sum of the separation constants as energy
or, if you prefer, energy times a constant. Solve separately matching the boundary conditions
and then assemble the normalized TOTAL SOLUTION. Of course, all three dimensions
behave the same so only one of them really needs to be done—which is NOT to say that each
one is a total solution all by itself.
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b) TIs there energy degeneracy? Why?

c¢) Determine the 6 lowest energies and their degeneracy? HINTS: A systematic approach would
be fix an nmax = max(ngz, ny, n,) and count all energies and their degeneracies governed by that
Nmax- One works one’s way up from np.x = 1 to as high as one needs to go to encompass the 6

lowest energies. Each npax governs the energies between nZ . + 2 and 3n2

2 ax tiax (Where we have

written the in dimensionless form). Note, e.g., that states described by (n; = 4,ny = 1,n, = 1),
(ng =1,ny =4,n, =1), and (ny = 1,ny = 1,n, = 4) are all distinct and degenerate.

003 gfull 01100 1 3 0 easy math: pi-states of a benzene ring
Extra keywords: (Ha-323:2.1)

5. Tmagine that we have 6 free electrons in 1-d circular system of radius r = 1.53 A. This system is
a simple model of a benzene ring molecule (CgHg) of 6 carbon atoms each bonded to a hydrogen
(Ke-153). The carbons are bonded by bonded by a single-double bond superposition. The free
electron system on the benzene constitute the benzene pi-states.

a)

Obtain expressions for the eigenstates, wavenumbers, and eigen-energies of the free
electrons. Re-express the wavenumbers and energies in terms of Angstroms and electron-

volts. Note 7Z2/(2m) = 3.81eV-A? for electrons. Sketch the energy level diagram.

One electron per carbon lies in the circular state for a benzene ring: these are the w
electrons. Assuming that two electrons can be found in any state, what is the total energy
of the ground state configurations? NOTE: Two electrons can be found in any state
because there are two spin states they can be found in. Thus the Pauli exclusion principle
is maintained: i.e., only one electron can be found in any single particle state (e.g., Gr-180).

What is the energy difference in eV between the lowest empty level and highest occupied
level for the ground state configuration? This is the radiation absorption threshold. What is
the threshold line wavelength in microns? In what wavelength regime is this line? NOTE:
The constant he = 1.23984 eV-pm.

Now imagine we broke the benzene ring, but magically kept the length constant. Obtain
expressions for the eigenstates, wavenumbers, and eigen-energies of the free electrons. Re-
express the wavenumbers and energies in terms of Angstroms and electron-volts. Sketch
the energy levels on the previous energy level diagram.

What is the ground state energy for the broken ring. What is the change in ground state
energy from the unbroken ring. This change is a contribution to the energy required to
break the ring or the energy of a resonant = bond.

I know we said that somewhere that quantum mechanical bound states always had to have
E > Viin. But in the ring case we had Vi, = 0, and we have a state with £ = 0. So why
do we have this paradox? Is the paradox possible in 2 dimensions or 3 dimensions?
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Multiple-Choice Problems

004 gmult 00100 2 4 1 moderate deducto-memory: SHO eigen-energies
1. “Let’s play Jeopardy! For $100, the answer is: fiw.

a) What is the energy difference between adjacent simple harmonic ocsillator energy levels,
Alex?

b) What is the energy difference between adjacent infinite square well energy levels, Alex?

c) What is the energy difference between most adjacent infinite square well energy levels,
Alex?

d) What is the energy difference between the first two simple harmonic ocsillator energy levels
ONLY, Alex?

e) What is the bar where physicists hang out in Las Vegas, Alex?

Full-Answer Problems

004 gfull 00100 2 3 0 moderate math: SHO ground state analyzed
Extra keywords: (Gr-19:1.14)
1. The simple harmonic oscillator (SHO) ground state is

Wo(z,t) = Ae=P?2%[2=iEot|To ,

where

a) Verify that the wave function satisfies the full Schrédinger equation for the SHO. Recall
that the SHO potential is V(z) = (1/2)mw?z?.

b) Determine the normalization constant A.
c) Calculate the expectation values of z, z?, p, and p?.

d) Calculate o, and o, and show that they satisfy the Heisenberg uncertainty principle.

004 gfull 00200 2 3 0 moderate thinking: SHO classically forbidden
Extra keywords: (Gr-43:2.15) classical turning points
2. What is the probability is of finding a particle in the ground state of a simple harmonic oscillator
potential outside of the classically allowed region: i.e., beyond the classical turning points?
HINT: You will have to use a table of the integrated Gaussian function.

004 gfull 00300 2 5 0 moderate thinking: mixed SHO stationary states
Extra keywords: (Gr-43:2.17)

26
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3. A particle in a simple harmonic oscillator (SHO) potential has initial wave function

U(z,0) = Ao+ 1] ,

where A 1s the normalization constant and the 1; are the standard form 0Oth and 1st SHO
eigenstates. Recall the potential is

V(z) = §mw2m2
Note w is just an angular frequency parameter of the potential and not NECESSARILY
the frequency of anything in particular. In the classical oscillator case w is the frequency of
oscillation, of course.

a) Determine A assuming it is pure real as we are always free to do.

b) Write down ¥(z,¢). There is no need to express the 1; explicitly. Why must this ¥(z,?)
be the solution?

c¢) Determine |¥(z,¢)|? in simplified form. There should be a sinusoidal function of time in
your simplified form.

d) Determine (z). Note that (z) oscillates in time. What is its angular frequency and
amplitude.

e) Determine {p) the quick way using the 1st formula of Ehrenfest’s theorem. Check that the
2nd formula of Ehrenfest’s theorem holds.

004 gfull 01000 3 5 0 tough thinking: infinite square well/SHO hybrid
Extra keywords: (Mo-424:9.4)
4. Say you have the potential
00 x < 0;
Viz)=<1
(z) { _—mw2a:2 x> 0.

2

a) By reflecting on the nature of the potential AND on the boundary conditions, identify
the set of Schrodinger equation eigenfunctions satisfy this potential. Justify your answer.
HINTS: Don’t try solving the Schrodinger equation directly, just use an already known
set of eigenfunctions to identify the new set. This shouldn’t take long.

b) What is the expression for the eigen-energies of your eigenfunctions?

c) What factor must multiply the already-known (and already normalized) eigenfunctions
you used to construct the new set you found in part (a) in order to normalize the new
eigenfunctions? HINT: Use the evenness or oddness (i.e., definite parity) of the already-
known set.

d) Show that your new eigenfunctions are orthogonal. HINT: Use orthogonality and the
definite parity of the already-known set.

e) Show that your eigenfunctions form a complete set given that the already-known set
was complete. HINTS: Remember completeness only requires that you can expand any
suitably well-behaved function (which means T think it has to be piecewise continuous (Ar-
435) and square-integrable (CDL-99) satisfying the same boundary conditions as the set
used in the expansion. You don’t have to be able to expand any function. Also, use the
completeness of the already-known set.

004 gfull 01100 3 5 0 tough thinking: Hermite generating function
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5. The generating function method is a powerful technique for getting the properties of the
eigenfunctions of Hermitian operators (or self-adjoint operators in math-speak). Orthogonality,
the norm value, and the recurrence relations for generating the complete set all fall out with
only moderate arduous labor. The only problem is, who the devil thought up the generating
function? In the case of Hermite polynomials the generating function—which may or may not
have been thought up by Hermite—is

[ee]
tT’L
gz 1) =TT = N H,—
n!

n=0

(Ar-609fF). The H,’s are the Hermite polynomials: they are functions of # and n is their order.
a) Check to see if Hermite did think up “his” generating function at:
http://www-groups.dcs.st-and.ac.uk/~history/BiogIndex.html
HINTS: You don’t have to do this in a test mise en scene.

b) Show that the two recurrence relations
Hoy1=2xH, —2nH, and H;L =2nH,_,

follow by differentiating the generating function with respect to ¢ and z, respectively, and
relying on the uniqueness of power series. The recurrence relations provide a means of
finding any order of Hermite polynomial. Probably one can efficiently find the coefficients
for succeeding orders using an integer arithmetic computer program using the recurrence
relation—but that’s another (homework) problem.

c) Use the first recurrence relation to work out and tabulate the polynomials up to 3rd order.
You can find the first two polynomials needed to start the process by simple expansion of
generating function.

d) Now for something a bit more challenging. Show that

00 2, . Y o ,p [n/2] |
43w _ (=t +2tx)" 1 n! (o \n—2k
9(@t)=c =2 =2 2 2)
£=0 n=0 k=0
which implies that
[n/2] nl
Hn — : 1 k 9 n—2k
Z (= 2k ()
Note
o n/2 for n even;
(/2] = { (n—1)/2 for n odd.

HINTS: You will have to expand (—t% + 2tz)" in a binomial series and then re-order the
summation. A schematic table of the terms ordered in row by £ and in column by & makes
the re-ordering of the summation clearer: add up diagonals rather than rows.

e) Prove the following special results from the generating function:

Hon(0) = (=1)" 2L Hapy(0)=0, and  Hp(z) = (=1)"Ha(~2) .

The last results shows that the Hermite polynomials have definite parity: even for n even;

odd for n odd.
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What is called a Rodrigues formula for the Hermite polynomials can also be derived from
the generating function:

2 0" 2
H, = (-1)"€" e (e™).
Derive this formula. HINTS: Write
g(z, 1) = et 2T = 77 = (t=0)°

and note that
oft—w) __9f(t—2)

ot oz

Hey this question is just going on and on. Now show that Hermite’s differential equation
H!!'—2zH! +2nH, =0

follows from the two recurrence relations. This result shows that the Hermite polynomials
satisfy Hermite’s differential equation.

Now consider the Hermite differential equation
h' —2xh' +2vh =10,

where v is not necessarily an integer > 0. Try a power series solution

(0]

h:Zach‘ﬁ,

£=0

and show for sufficiently large ¢ and z that the series solutions approximate growing

. 2 2 . .. . . .
exponentials of the form e and ze® —unless v is a positive or zero integer in which
case one gets what kind of solution?

The Hermite differential equation cannot be written in an eigenproblem form with a
Hermitian operator since the operator

0? 0

I PO

Ox? Oz
is not in fact Hermitian. I won’t ask you to prove this since I don’t what to do that myself
tonight. But if you substitute for H,(z) (with n a positive or zero integer) the function

1/)n(m)ex2/2

in the Hermite differential equation, you do an eigenproblem with a Hermitian operator.
Find this eigenproblem equation. What are the eigenfunctions and eigenvalues? Are
the eigenfunctions square-integrable: i.e., normalizable in a wave function sense? Do the
eigenfunctions have definite parity? Are the eigenvalues degenerate for square-integrable
solutions? Based on a property of eigenfunctions of a Hermitian operator what can you
say about the orthogonality of the eigenfunctions?

In order to normalize the eigenfunctions of part (i) in a wave function sense consider the
relation

(e}

st 2 2 2 2 2
Z ﬁﬁe_x HpHy, = e " glx,s)g(x,t) = ™% e * T2Temt7+2t0

m,n=0
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Integrate both sides over all 2 and use uniqueness of power series to find the normalization
constants and incidently verify orthogonality.

Now here in part infinity we will make the connection to physics. The simple harmonic
oscillator time independent Schrodinger equation is

One can reduce this to the dimensionless eigenproblem of part (i), by changing the variable
with
xr=py.
To find g, let
2
h 1,
A= - and B= 3w

and divide equation through by an unknown C', equate what needs to be equated, and solve
for C' and 3. What are the physical solutions and eigen-energies of the SHO eigenproblem?



Chapt. 5 Free Particles and Momemtum Representation

Multiple-Choice Problems

005 gmult 00100 1 1 2 easy deducto-memory: definition free particle
1. A free particle 1s:

) bound.

) unbound.

) both bound and unbound.

) neither bound nor unbound.
)

a
b
c
d

neither here nor there.

[¢]

005 gmult 00200 1 4 5 easy deducto-mem: free particle case
2. The free particle case (as customarily defined) is when the potential is:

a) the simple harmonic oscillator potential (SHO).
b) a quasi-SHO potential.

c) an infinite square well potential.
d) a finite square well potential.

)

e) zero (or a constant) everywhere.

005 gmult 00300 1 4 4 easy deducto-mem: free particle eigenfunction
3. The general expression for the (zero-potential) free particle energy-eigenfunction in 1-dimension
is:

Q

e*** where k = +E.
ef? where k = +F.
ek where k = +v/2mE/ .
e*® where k = +/2mFE/T.
e*7” where k = +v2mE/#.

€

)
b)
)
)

)

005 gmult 00400 1 4 1 easy deducto-mem: free particle normalization
4. The (zero-potential) free particle energy-eigenfunctions cannot represent physical states that a
particle can actually be in because they:

) can’t be normalized (i.e., they arn’t square-integrable).
) can be normalized (i.e., they are square-integrable).

) are growing exponentials.

) don’t exist.

) do exist.

a
b
c
d

@

005 gmult 00500 1 1 3 easy memory: free particle
5. The free particle stationary states

a) can be occupied by a particle.
b) can be occupied by two particles.
c) cannot actually be occupied by a particle.

31
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)
o)

are unknown.
are normalizable.

Full-Answer Problems

005 gfull 00100 2 5 0 easy thinking: momentum representation
Extra keywords: (Gr-49:2.21)
1. The initial wave function of a free particle 1s

P — A , TE [_aaa];
¥(,0) = {0 , otherwise,

where a and A are positive real numbers. The particle is in a completely zero potential
environment: this is usually implied if nothing to the contrary is said.

a)
b)

d)

Determine A from normalization.

Determine W(k) the wavenumber representation of the state of the particle: i.e., the Fourier
transform of ¥(z,0). Note the wavenumber representation is time-independent: this is
because the wavenumber eigenstates are the stationary states of the system. Sketch ¥(k).
Locate the global maximum and the zeros of (k). Give the expressions for the zero
positions.

Determine the wavenumber space probability density |¥(k)|? and show then that W(k) is
normalized in wavenumber space. Sketch |¥(k)|? and locate the global maximum and the
zeros. Give the expressions for the zero positions.

Crudely estimate and then calculate o, 0%, and o,. Are the results consistent with the
Heisenberg uncertainty principle.

005 gfull 00200 3 3 0 tough math: k-representation of half exponential
Extra keywords: (Mo-140:4.4)
2. At time zero, a wave function for a free particle in a zero-potential 1-dimensional space 1s:

a)

b)

U(z,0) = Ae~ =l Egikor

Determine the normalization constant A. HINT: Remember it’s ¥(z,0)*¥(z,0) that
appears in the normalization equation.

Sketch the z-space probability density |¥(z,0)|>. What is the e-folding distance of the
probability density?

NOTE: The e-folding distance is a newish term that means the distance in which an
exponential function changes by a factor of e. Tt can be generalized to any function f(z)
using the formula

flx

)
flz)

where z, is the generalized e-folding distance. The generalized e-folding distance is only
locally valid to the region near the z where the functions are evaluated. The generalized
e-folding distance is also sometimes called the scale height. If f(z) were an exponential
function, z. would be the e-folding distance in the narrow sense. If f(z) were a linear
function, z. would be the distance to the zero of the function.

)

0= |
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c) Show that the wavenumber representation of free particle state is

2¢ 1
) = @m ~

This, of course, is the Fourier transform of ¥(z,0). Recall the wavenumber representation
is time-independent since the wavenumber eigenstates are the stationary states of the
potential.

d) Confirm that ¥(k) is normalized in wavenumber space. HINTS: You will probably need an
integral table—unless you’re very, very good. Also rememberit’s ¥(k)* ¥ (k) that appears in
the normalization integral; always easy to forget this when dealing with pure real functions.

e) Write down the time-dependent solution ¥(z,¢) in Fourier transform form? Don’t try to
evaluate the integral. What is w in terms of k and energy E7

005 gfull 00300 3 3 0 tough math: Gaussian free wave packet spreading
Extra keywords: (Gr-50:2.22)
3. A free particle has an initial Gaussian wave function

U(z,0) = Ae—9e’ ,

where a and A are real positive constants.

a) Normalize ¥(z,0). HINT: Recall that the integrand is |¥(z,¢)|> = ¥(z,t)*¥(z,t). I'm
always forgetting this myself when the function is pure real and there is no imaginary part
to remind me of it.

b) Determine the wavenumber representation ¥(k) (which is time-independent). This involves
a Gaussian integral where you have to complete the square in an exponential exponent.
Note

b b2 b?
2 _ _ 2, b
exp[—(az® + bx)] = exp [ a <m + 2 + 4(12)] exp (4&2)

b\’ b
=exp |—a <33+ Z) exp (E) .

The exponetial factor exp (b2/4a) comes out of the integral and the integral over the whole
z-axis is just a simple Gaussian integral.

c) Determine ¥(z,%). You have to again do a Gaussian integral where you have to complete
the square in an exponential exponent. It’s not that hard to do, but it is tedious and small
errors can mess things up.

d) Find the probability density |¥(z,#)|?. This should be a Gaussian if all goes well. Sketch
the function and identify the standard deviation ¢. What happens to the probability
density with time. HINT: Note the identities

[ <a+ib)]* { [ac—i—i(bc—ad)—}—bd]}*
exp , = < exp
c+id c? 4+ d?
ac —i(be — ad) + bd
= <{exp o

oo (53]
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and
(\/a—}— ib) = (v reM’) = (ﬁewﬂ) = \fre 101?
where a + ib magnitude and phase are r = v/a? + b2 and ¢ = tan=!(b/a), respectively.

Find (z), (z?), oz, (p), (p?), and o,. HINT: These results follow immediately from the
Gaussian nature of the functions in parts (d) and (b).

Check that the Heisenberg uncertainty principle is satisfied. Does the equality ever hold?
What’s true about the wave function at the time when the equality holds that is not true
at other times?

005 gfull 00400 3 5 0 tough thinking: general free wave packet spreading
Extra keywords: (CDL-342:4)
4. Consider a free particle in one dimension.

a)
b)

Show using Ehrenfest’s theorem that {z) is linear in time and that (p) is constant.

Write the equation of motion (time evolution equation) for (p?), then {[z, p]+) (the subscript
+ indicates anticommutator), and then (z?): i.e., obtain expressions for the time derivatives
of these quantities. Simplify the expressions for the derivatives as much as possible; but
without loss of generality. You should get nice compact formal results. Integrate these
derivatives with respect to time and remember constants of integration.

Using the results obtained in parts (a) and (b) and for suitable choice of one of the constants
of integration, show that

(82) (1) = —5 (A9), 1 + (A2,

where (Am2)0 and (Ap2)0 are the initial standard deviations.

005 gfull 00500 3 5 0 tough thinking: x-op and p-op in x and p representation
Extra keywords: (Gr-117:3.51) a very general solution is given
5. In the position representation, the position operator zop is just x, a multiplicative variable. The
momentum operator pgp, in the position representation is

_ho
Pdif = i oz

where we use the subsript “dif” here to indicate explicitly that this is a differentiating operator.

a)

Find the momentum operator pop in the momentum representation. HINTS: Operate
with pgir on the Fourier transform expansion of a general wave function

=S} eipx/ﬁ
U(z,t) = / U(p,t)—dp

— o0 27 h

and work the components of the integral around (using whatever tricks you need) until you

have
eipx/ h

pdif\p(r7t) :/_ f(pvt)\/ﬁdp .

The function f(p,t) is the Fourier transform of pqis¥(z,t) and operator acting on ¥(p, )
to give you f(p,t) is the momentum operator in the momentum representation.

Find the position operator z., in the momentum representation. HINTS: The same as
for part (a), mutatis mutandis: find the Fourier transform of wave function z¥(z,1), etc.
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c) What are the momentum representation versions of zF and pfhf?

d) What is the momentum representation versions of l‘kpfhf and pﬁifmk. By the by, you should
remember how to interpret .Z‘kpfhf and pfhfa:k: they are two successive operators acting on

understood function to the right. Explicitly for a general function f(z), one could write

2Fplhic fz) = 2F [phis f(2)]
and
Pﬁiffbkf(l‘) = Pfhf [l’kf(m)] )

Unfortunately, there is sometimes ambiguity in writing formulae with operators: try to be
clear.

e) What is the momentum representation version of @Q(z,pair) where @ is any linear
combination of powers of z and pgjr including mixed powers. HINTS: Consider the general
term

k¢
@ P Pt
and figure out what commutes with what.

f) Show that the expectation value of @ is the same in both representations. HINT:
Remember the Dirac delta function

oo i(k—k')z
6(]<:—k’):/ s
Vs

— 00
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Multiple-Choice Problems

006 gmult 00100 1 1 2 easy memory: Newton’s 2nd law
1. Classical mechanics can be very briefly summarized by:

a) Newton’s Principia.

Newton’s 2nd law.

Lagrange’s Traité de mécanique analytique.
Euler’s 80 volumes of mathematical works.
Goldstein 3rd edition.

b
c
d

€

)
)
)
)

006 gmult 00200 1 4 1 easy deducto-memory: Lagrangian formulation
Extra keywords: see GPS-12, 17, and 48
2. “Let’s play Jeopardy! For $100, the answer is: A formulation of classical mechanics that is
usually restricted to systems with holonomic or semi-holonomic virtual-displacement workless
constraints without dissipation and uses the function L =7 —V.”

a) What is the Lagrangian formulation, Alex?

What is the Hamiltonian formulation, Alex?

What is the Leibundgutian formulation, Alex?
What is the Harrisonian formulation, Alex?

What is the Sergeant Schultzian formulation, Alex?

b)
c)
d)
)

€

006 gmult 00300 1 1 5 easy memory: Hamilton’s principle
3. A fruitful starting point for the derivation of Lagrange’s equations is:

a) Lagrange’s lemma.
Newton’s scholium.
Euler’s conjecture.
Laplace’s hypothesis
Hamilton’s principle.

b)
)
)
)

€

Full-Answer Problems

006 gfull 01000 2 5 0 moderate thinking: Lorentz force

1. The Lorentz force .
ﬁ:q<ﬁ+3x§)
c

(here expressed in Gaussian units: Ja-238) can be obtained from Lagrange’s equations using a
Lagrangian containing a generalized potential

7 4
U=q<¢—E~A) ;

36
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where ¢ is the electric potential and A is the vector potential of electromagnetism. The
Lagrangian is L =T — U, where T is the kinetic energy. Lagrange’s equations are

4oLy _ 9L
dt \ 04 dgi

where ¢; is a generalized coordinate (not charge) and ¢; is the total time derivative of ¢: (i.e.,

the rate of change of ¢; which describes an actual particle.

Work from the Lorentz force expression for component 7 to
ou d [oU
Fi = - 1. . 3

where the z; are the Cartesian coordinates of a particle (#; are the particle velocity components).

Then verify that
m:zrl = Fi

follows from the Lagrange equations.

You may need some hints. Recall that

E=_-V oA B=VxA
c Ot

(Ja-219). The Levi-Civita symbol ¢;;; will be useful since

0
(V X A)z = €ijk @Ak .

where Einstein summation has been used. Recall

—1, 1jk anticyclic;

1, ik cyclic;
Eijk = {
0, if two indices the same.

The identity (with Einstein summation)

€ijkEitm = 640km — 0jmOke
is also useful. I've never found an elegant derivation of this last identity: the only proof seems
to be by exhaustion. Note also that the total time derivative is interpreted as the rate of change

of a quantity as the particle moves. Thus

dt 8t = Oz; dt

0A;  0A; . 0A; 04
==+ v

o "o T o T

where we again use Einstein summation.
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Multiple-Choice Problems

007 gmult 00100 1 1 5 easy memory: vector addition
1. The sum of two vectors belonging to a vector space is:

a) a scalar.

another vector, but in a different vector space.
a generalized cosine.

the Schwarz inequality.

e) another vector in the same vector space.

)
c)
d)

)

007 gmult 00200 1 4 4 easy deducto-memory: Schwarz inequality
2. “Let’s play Jeopardy! For $100, the answer is: [{a|B3)|? < (a]a){B|B).”

a) What is the triangle inequality, Alex?
) What is the Heisenberg uncertainty principle, Alex?
) What is Fermat’s last theorem, Alex?
d) What is the Schwarz inequality, Alex?
)

e) What is Schubert’s unfinished last symphony, Alex?

007 gmult 00300 1 4 5 easy deducto-memory: Gram-Schmidt procedure
3. Any set of linearly independent vectors can be orthonormalized by the:

a) Pound-Smith procedure.
) Li Po tao.
) Sobolev method.
d) Sobolev-P method.
)

e) Gram-Schmidt procedure.

007 gmult 00400 1 4 4 moderate memory: definition unitary matrix
4. A unitary matrix is defined by the expression:

T, where superscript 7' means transpose.

007 gmult 00500 2 3 4 moderate math: trivial eigenvalue problem
5. What are the eigenvalues of
L=y,
i 1)

a) Both are 0.
b) 0 and 1.

38
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c) 0and —1.
d) 0 and 2.
e) —iand 1.

007 gmult 00600 1 4 5 moderate memory: riddle Hermitian matrix
6. Holy peccant poets Batman, it’s the Riddler.

I charge to the right and hit on a ket,
and if it’s not eigen, it’s still in the set,
I charge to left and with a quick draw
make a new bra from out of a bra.

Not fish nor fowl nor quadratic,

not uncanny tho oft Q-mechanic,
and transposed I'm just the right me
if also complexicated as you can see.

My arrows down drawn from quivered,

the same when sped to the world delivered
aside from a steady factor, rock of reality,
mayhap of a quantum and that’s energy.

a) A unitary operator.

b) A ket—no, no, a bra vector.
c) An eigenvalue.

d) Hamlet.

e) A Hermitian matrix.

Full-Answer Problems

007 gfull 00090 1 5 0 easy thinking: ordinary vector space
Extra keywords: (Gr-77:3.1)

1. Consider ordinary 3-dimensional vectors with complex components specified by a 3-tuple:
(z,y,z). They constitute a 3-dimensional vector space. Are the following subsets of this vector
space vector spaces? If so, what is their dimension? HINT: See Gr-76 for all the properties a
vector space must have.

a) The subset of all vectors all (z,y,0).
b) The subset of all vectors all (z,y,1).

c) The subset of all vectors of the form (a, a, a), where a is any complex number.

007 gfull 00100 2 5 0 moderate thinking: vector space, polynomial
Extra keywords: (Gr-78:3.2)

2. A vector space is constituted by a set of vectors {|a), |8}, |7}, ...} and a set of scalars {a, b, ¢, ...}
(ordinary complex numbers is all that quantum mechanics requires) subject to two operations
vector addition and scalar multiplication obeying the certain rules. Note it is the relations
between vectors that make them constitute a vector space. What they “are” we leave general.
The rules are:

i) A sum of vectors is a vector:

) +18) = 1)
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ii)

iii)

iv)

vi)

vii)

viii)

ix)

x)

xi)

where |a) and |B) are any vectors in the space and |y) also in the space. Note we have
not defined what vector addition consists of. That definition goes beyond the general
requirements.

Vector addition is commutative:
o) +18) = 1B) + |e) .
Vector addition is associative:
(la) +18) + 1) = la) + (18) + 7)) -

There is a zero or null vector |0) such that

o) +[0) = |a)
For every vector there is an inverse vector such that

o) + | —a) =10) .

Subtraction of a vector is defined as the addition of its inverse: thus

|—a)=—|a) .

This is consistent with all ordinary math.

Scalar multiplication of a vector gives a vector:
ale) = [B) -
Scalar multiplication is distributive on vector addition:
a(la) +18)) = ala) + a(|B)) -
Scalar multiplication is distributive on scalar addition:
(a +b)|a) = ala) + bla) .
Scalar multiplication is associative with respect to scalar multiplication:
(ab)|a) = a(bla)) .

One has
0la)y =0} .

Finally
1a) =|a) .

If any vector in the space can be written as linear combination of a set of linearly

independent vectors, that set is called a basis and is said to span the set. The number of
vectors in the basis is the dimension of the space. In general there will be infinitely many bases
for a space.
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Finally the question. Consider the set of polynomials {P(z)} (with complex coefficients)
and degree less than n. For each of the subsets of this set (specified below) answer the following
questions: 1) Is the subset a vector space? 2) If not, what property does it lack? 3) If yes, what
is the most obvious basis and what is the dimension of the space?

a) The subset that is the whole set.
b) The subset of even polynomials.

c¢) The subset where the highest term has coefficient a (i.e., the leading coefficient is a) and a
is a general complex number, except a # 0.

d) The subset where P(z = g) = 0 where g is a general real number.

e) The subset where P(z = g) = h where g is a general real number and h is a general complex
number, except h # 0.

007 gfull 00110 2 5 0 moderate thinking: unique expansion in basis
Extra keywords: (Gr-78:3.3)
3. Prove that the expansion of a vector in terms of some basis is unique: i.e., the set of expansion
coefficients for the vector i1s unique.

007 gfull 00200 3 5 0 tough thinking: Gram-Schmidt orthonormalization
Extra keywords: (Gr-79:3.4)
4. Say {|a;)} is a basis (i.e., a set of linearly independent vectors that span a vector space), but
it is not orthonormal. The first step of the Gram-Schmidt orthogonalization procedure is to
normalize the (nominally) first vector to create a new first vector for a new orthonormal basis:

o)
[Jea]]

|a1) =

where recall that the norm of a vector |a) is given by

o[ = [Haa) || = v{ale) .

The second step is create a new second vector that is orthogonal to the new first vector using
the old second vector and the new first vector:

|ad) = |aa) — ot Jaifos)
2 [| |aa) — o ad|as) ||

Note we have subtracted the projection of |as) on |af) from |as) and normalized.
a) Write down the general step of the Gram-Schmidt procedure.
b) Why must an orthonormal set of non-null vectors be a linearly independent.

c) TIs the result of a Gram-Schmidt procedure independent of the order the original vectors
are used? HINT: Say you first use vector |ag) of the old set in the procedure. The first
new vector is just |a,) normalized: i.e., |al)=|ay)/||aq||. All the other new vectors will be
orthogonal to |a/). But what if you started with |ap) which in general is not orthogonal
to |ag)?

d) How many orthonormalized bases can an n dimensional space have in general? (Ignore
the strange n = 1 case.) HINT: Can’t the Gram-Schmidt procedure be started with any
vector at all in the vector space?

e) What happens in the procedure if the original vector set {|a;)} does not, in fact, consist
of all linearly independent vectors? To understand this case analyze another apparently
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different case. In this other case you start the Gram-Schmidt procedure with n original
vectors. Along the way the procedure yields null vectors for the new basis. Nothing can
be done with the null vectors: they can’t be part of basis or normalized. So you just put
those null vectors and the vectors they were meant to replace aside and continue with the
procedure. Say you got m null vectors in the procedure and so ended up with n — m
non-null orthonormalized vectors. Are these n — m new vectors independent? How many
of the old vectors were used in constructing the new n — m non-null vectors and which old
vectors were they? Can all the old vectors be recontructed from the the new n—m non-null
vectors? Now answer the original question.

f) If the original set did consist of n linearly independent vectors, why must the new
orthonormal set consist of n linearly independent vectors? HINT: Should be just a
corollary of the part (e) answer.

g) Orthonormalize the 3-space basis consisting of

142 i 0
lay=1 1 | ,Jasy=1{3], and Jaz)= | 32
i 1 0

Input the vectors into the procedure in the reverse of their nominal order: why might a
marker insist on this? Note setting kets equal to columns is a lousy notation, but you-all
know what I mean. The bras, of course, should be “equated” to the row vectors. HINT:
Make sure you use the normalized new vectors in the construction procedure.

007 gfull 00300 2 3 0 moderate math: prove the Schwarz inequality

5.

Extra keywords: (Gr-80:3.5)

As Andy Rooney says (or used to say if this problem has reached the stage where only old fogys
remember that king of the old fogys) don’t you just hate magic proofs where you start from
some unmotivated expression and do a number of unmotivated steps to arrive at result that
you could never have been guessed from the way you were going about getting it. Well let’s see
if we can prove the Schwarz inequality

KalB)* < {ala)(B|B)

sans too many absurd steps. Note the equality only holds in two cases. First when |8) = ala),
where a is some complex constant. Second, when either or both of |a) and |8} are null vectors:
in this case one has zero equals zero.

a) First consider two vectors |a) and |3) which are completely general, except that |a) is not
a null vector. Because |a) is not null, it can be normalized. Let |&) = |a)/||a|| be the
normalized version of |a). Now determine |f|), the component of |3) in the |a) direction
and the norm squared of |§)).

Note that for vector space
M +10) =1

where |0) is the null vector and |y) is general. For an inner product vector space, this rule
implies for general vector |d) that

(017) +(310) = (3] ,

and thus that
(610) = 0 = (0}3) -

b) Now what is [31), the component of |3) that is everything other than [3)).
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c) What basic inner product vector space requirement must the norm squared of |3, ) satisfy?
What does this requirement then imply about the relationship between the norms squared

of |3) and |/3||>‘.7
d) From the part (c) answer the Schwarz inequality should now follow.

e) Does the Schwarz inequality hold if |e) is a null vector?

007 gfull 00310 1 3 0 easy math: find a generalized angle
Extra keywords: (Gr-80:3.6)
6. The general inner-product vector space definition of generalized angle according to Gr-79 is
KalB)
VA{ala)(B]B)

where |a) and |3) are general non-zero vectors.

oS Ogen =

a) Ts this definition completely consistent with the ordinary definition of an angle from the
ordinary vector dot product? Why not?

b) Find the generalized angle between vectors

1+ 4—
la) = 1 and |18Y = 0
? 2—2

007 gfull 00400 1 3 0 easy math: prove triangle inequality
Extra keywords: (Gr-80:3.7)
7. Prove the triangle inequality:

e +18) [ < flel[+ 11A1] -

HINT: Start with || |a) + |3) ||?, expand, and use reality and the Schwarz inequality.

007 gfull 00500 3 3 0 tough math: simple matrix identities
Extra keywords: (Gr-87:3.12)

8. Prove the following matrix identities:
a) (AB)T = BTAT where superscript “T” means transpose.
b) (AB)! = BT At where superscript 1 means Hermitian conjugate.
c) (AB)~t =B714-L
) (UV

d) (UV)~! = (UV)! (i.e., UV is unitary) given that U and V are unitary. In other words,
prove the product of unitary matrices is unitiary.

e) (AB)! = AB (i.e., AB is Hermitian) given that A and B are commuting Hermitian
matrices. Does the converse hold: i.e., does (AB)! = AB imply A and B are commuting
Hermitian matrices? HINTS: Find a trivial counterexample. Try B = A~1.

f) (A+ B)! = A+ B (i.e., A+ B is Hermitian) given that A and B are Hermitian. Does the
converse hold? HINT: Find a trivial counterexample to the converse.

g) (U+ V) = (U +V)~! (ie., U+ V is unitary) given that U and V are unitary—that is,
prove this relation if it’s indeed true—if 1t’s not true, prove that it’s not true. HINT: Find
a simple counterexample: e.g., two 2 x 2 unit matrices.
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007 gfull 00510 2 5 0 moderate thinking: commuting operations
Extra keywords: (Gr-84)
9. There are 4 simple operations that can be done to a matrix: inversing, (—1), complex
conjugating (x), transposing (7), and Hermitian conjugating (). Prove that all these operations
mutually commute. Do this systematically: there are

combinations of the 2 operations. We assume the matrices have inverses for the proofs involving
them.

007 gfull 00600 3 3 0 tough math: basis change results
Extra keywords: (Gr-87:3.14)
10. Do the following.

a) Prove that matrix multiplication is preserved under similarity or linear basis change: i.e.,
if AcB. = C. in the e-basis, then A; By = C in the f-basis where S is the basis change
matrix from e-basis to the f-basis. Basis change does not in general preserve symmetry,
reality, or Hermiticity. But since I don’t want to find the counterexamples, I won’t ask you
to.

b) If H, in the e-basis is a Hermitian matrix and the basis change to the f-basis U is unitary,
prove that H; is Hermitian: i.e., Hermiticity is is preserved.

c) Prove that basis orthonormality is preserved through a basis change U iff (if and only if)
U is unitary.

007 gfull 00700 2 5 0 moderate thinking: square-integrable, inner product
Extra keywords: no analog Griffiths’ problem, but he discusses this case on Gr-96
11. If f(z) and g(z) are square-integrable complex functions, then the inner product

(Flg) = /_O; frgdx

exists: i.e., is convergent to a finite value. In other words, that f(z) are g(z) are square-
integrable is sufficient for the inner product’s existence.

a) Prove the statement for the case where f(z) and g(z) are real functions. HINT: In doing
this 1t helps to define a function

h(z) = f(z) where |f(z)| > |g(x)| (which can be called f region);
¥= g(z) where |f(z)] < |g(z)| (which can be called the g region),

and show that it must be square-integrable. Then “squeeze” {f|g).

b) Now prove the statement for complex f(z) and g(z). HINTS: Rewrite the functions in
terms of their real and imaginary parts: i.e.,

f(z) = fre(2) + ifim(z)

and
9(%) = gre(z) + igm(z) .

Now expand

oy = [ Z [y da
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in the terms of the new real and imaginary parts and reduce the problem to the part (a)
problem.

c) Now for the easy part. Prove the converse of the statement is false. HINT: Find some
trivial counterexample.

d) Now another easy part. Say you have a vector space of functions. Prove the following
two statements are equivalent: 1) the inner product property holds; 2) the functions are
square-integrable.

007 gfull 00800 2 3 0 moderate math: Gram-Schmidt, Legendre polynomials

12.

Extra keywords: (Gr-96:3.25)

Using the Gram-Schmidt procedure, orthonormalize the set of polynomial vectors 1, z, and
z? on the interval [—1,1]. Compare these to the Legendre polynomials {P,(z)} which are
orthogonal on the interval [—1, 1], but not normalized. The normalized Legendre polynomials

are given by
/ 1
Py normalized(fb) =3/n+ EPn (I‘) ,

where P,(z) is a standard Legendre polynomial (e.g., Ar-547).
Table: Legendre Polynomials

Order n P,

0 Pi=1

1 P=x

2 Py =1(327 — 1)

3 Py = 1(52® — 3z)

4 Py = L(352% — 3027 + 3)

5 Ps = 1(632° — 7023 + 152)

Note—The reason why the Legendre polynomials arn’t normalized is that the standard
forms are what one gets straight from the generating function. The generating function approach
to the Legendre polynomials allows you to prove many of their properties quickly (e.g., Ar-534).

007 gfull 00900 1 3 0 easy math: verifying a sinusoidal basis

13.

Extra keywords: (Gr-96:3.26)

Consider the set of trigonometric functions defined by

N

f(x) = Z[an sin(nz) + b, cos(nz)]

n=0
on the interval [—7, w]. Show that the functions defined by

op(z) = ——c*7 where k=0,+£1,£2, ..., £N

are an orthonormal basis for the trigonometric set. What is the dimension of the space spanned
by the basis?

007 gfull 01000 2 3 0 moderate math: reduced SHO operator, Hermiticity

14.

Extra keywords: (Gr-99:3.28), dimensionless simple harmonic oscillator Hamiltonian
Consider the operator
d? 9

Q=g t*
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a)
b)

Show that f(z) = e/ is an eigenfunction of () and determine its eigenvalue.

Under what conditions, if any, is ) a Hermitian operator? HINTS: Recall
{91Q1)* = (fIQlg)

is the defining relation for the Hermitian conjugate Q' of operator Q. You will have to
write the matrix element {f|@|g) in the position representation and use integration by parts
to find the conditions.

007 gfull 01100 2 5 0 moderate thinking: Hilbert space problems
Extra keywords: (Gr-103:3.33)
15. Do the following.

a)

b)
c)

Show explicitly that any linear combination of two functions in the Hilbert space Ly(a,b)
is also in La(a,b). (By explicitly, T mean don’t just refer to the definition of a vector space
which, of course requires the sum of any two vectors to be a vector.)

For what values of real number s is f(z) = |2|° in La(—a,a)

Show that f(z) = e~ |l isin Ly = Ly(—00, o). Find the wavenumber space representation
of f(z): recall the wavenumber “orthonormal” basis states in the position representation

are )
ezkx

(z|k) =

007 gfull 01200 2 5 0 moderate thinking: Hermitian conjugate of AB
16. Some general operator and vector identities should be proven.

a)

Prove that the bra corresponding to vector Q|3) is (3|Q for @ and |3) general. HINT:
Define |3’y = @|B) and then take the inner product of that vector with another general
vector |a) and use the definition of the Hermitian conjugate. I'd use bra )3’ on ket |a) and
then reverse the order complex conjugating.

Show that the Hermitian conjugate of a scalar ¢ is just its complex conjugate.

Prove for operators, not matrices, that
(AB)t = BtAT .

The result 1s, of course, consistent with matrix representations of these operators. But
there are representations in which the operators are not matrices: e.g., the momentum
operator in the position representation is differentiating operator

_h o

i 0z

Our proof holds for such operators too since we done the proof in the general operator-
vector formalism.

p

007 gfull 01300 3 5 0 tough thinking: operators and matrices isomorphism
17. Expressions involving vector linear transformations or operators often (always?) isomorphic

to the corresponding matrix expressions when the operators are represented by matrices in
particular orthonormal bases. We would like to demonstrate this statement for a few important
simple cases. For clarity express operators with hats (e.g., A) and leave the corresponding
matrices unadorned (e.g., A). Consider a general orthonormal basis {|é)} where i serves as a
labeling index. Recall that the unit operator using this basis is

=9l ,
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where we use the Einstein summation rule, and so there is a sum on i. Recall that the ijth
matrix element of A is defined by

Aij = (i|Al5) .

This definition means that the scalar product (a|A[b), where |a) and |b) are general vectors, can
be reexpressed by matrix expression:

(al A[b) = (ali){il Al7)(jIb) = a} Aizb; = @t Ab

where @ and b are column vector n-tuples and where we have used the Einstein rule.

Prove that the following operator expressions are isomorphic to their corresponding matrix
expressions.

a) Sum of operators A+ B.

b) Product of operators AB.

c) Hermitian conjugation At
)

d) The identity (AB)t = BT At

007 gfull 01400 2 5 0 moderate thinking: bra ket projector completeness

18.

Extra keywords: (Gr-118:3.57) See also CDL-115, 138

For an inner product vector space there is some rule for calculating the inner product of two
general vectors: an inner product being a complex scalar. If |a) and |B) are general vectors,
then their inner product i1s denoted by

(a]B)

where in general the order is significant. Obviously different rules can be imagined for a vector
space which would lead to different values for the inner products. But the rule must have three
basic properties:

(1) {Bla) = (alB)" ,
(2) (| >0, where (a|a) = 0 if and only if |a) = |0),
and

®) (al (b18) + ch) ) = blald) + elabs)
where |a), |8}, and |y) are general vectors of the vector space and b and ¢ are general complex

scalars.

There are some immediate corollaries of the properties. First, if («|3) is pure real, then

(Bla) = ({alp) -

Second, if {@|B) is pure imaginary, then

(Bla)y = —(a|f) .
Third, if
16) = b|B) +c|lv)
then
(dla)™ = (ald) = b{a|B) + c{alv)

which implies

(Ola) = b*(Bla) + ¢*(v]a) .
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This last result makes
(1 + 3le” ) ) = 8°(Bla) + ()

a meaningful expression. The 3rd rule for a vector product inner space and last corollary
together mean that the distribution of inner product multiplication over addition happens in
the normal way one is used to.

Dirac had the happy idea of defining dual space vectors with the notation («| for the dual
vector of |a): {a| being called the bra vector or bra corresponding to |a), the ket vector or ket:
“bra” and “ket” coming from “bracket.” Mathematically, the bra (| is a linear function of the
vectors. Tt has the property of acting on a general vector |8) and yielding a complex scalar: the
scalar being exactly the inner product {«|g).

One immediate consequence of the bra definition can be drawn. Let |a), |8), and a be
general and let
o’y = ala) .

Then
(o'|B) = (Bla’)" = a™(Bla)" = a™(a|B)

implies that the bra corresponding to |a') is given by

(/| = a*{a| = {a]a” .

The use of bra vectors is perhaps unnecessary, but they do allow some operations and
properties of inner product vector spaces to be written compactly and intelligibly. Let’s consider
a few nice uses.

a) The projection operator or projector on to unit vector |e) is defined by
Fop = le){e] -

This operator has the property of changing a vector into a new vector that is |e) times
a scalar. It is perfectly reasonable to call this new vector the component of the original
vector in the direction of |e): this definition of component agrees with our 3-dimensional
Euclidean definition of a vector component, and so is a sensible generalization of that
the 3-dimensional Euclidean definition. This generalized component would also be the
contribution of a basis of which |e) is a member to the expansion of the original vector:
again the usage of the word component is entirely reasonable. In symbols

Popla) = |e)(e|a) = ale) ,

where a = {e|a).

Show that PO2p = Pop, and then that PJ, = Py, where n is any integer greater than or
equal to 1. HINTS: Write out the operators explicitly and remember |e) is a unit vector.

b) Say we have
Popla) = ala)

where Po, = |e){e| is the projection operator on unit vector |e) and |a} is unknown non-null
vector. Solve for the TWO solutions for a. Then solve for the |a) vectors corresponding
to these solutions. HINTS: Act on both sides of the equation with {e| to find an equation
for one a value. This equation won’t yield the 2nd a value—and that’s the hint for finding
the 2nd a value. Substitute the a values back into the original equation to determine the
corresponding |a) vectors. Note one a value has a vast degeneracy in general: i.e., many
vectors satisfy the original equation with that a value.
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The Hermitian conjugate of an operator  is written Qf. The definition of Q1 is given by
the expression

(BlQMa) = (|QIB)" ,

where |a) and |3) are general vectors. Prove that the bra corresponding to ket Q|5) must
(B|Q1 for general |a). HINTS: Let |3') = Q|3) and substitute this for @|3) in the defining
equation of the Hermitian conjugate operator. Note operators are not matrices (although
they can be represented as matrices in particular bases), and so you are not free to use
purely matrix concepts: in particular the concepts of tranpose and complex conjugation of
operators are not generally meaningful.

Say we define a particular operator @ by

Q= leXdl,

where |¢) and |¢)) are general vectors. Solve for Q. Under what condition is
Q'=Q7

When an operator equals its Hermitian conjugate, the operator is called Hermitian just as
in the case of matrices.

Say {|e;)} is an orthonormal basis. Show that
|6i><6i| =1,

where we have used Einstein summation and 1 is the unit operator. HINT: Expand a
general vector |a) in the basis.
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Multiple-Choice Problems

008 gmult 00090 1 4 5 easy deducto-memory: example Hilbert space
1. “Let’s play Jeopardy! For $100, the answer is: A space of all square-integrable functions on the
z interval (a,b).”

a) What is a non-inner product vector space, Alex?
) What is a non-vector space, Alex?

) What is a Dilbert space, Alex?

) What is a Dogbert space, Alex?

) What is a Hilbert space, Alex?

b
c
d

€

008 gmult 00100 1 1 3 easy memory: complex conjugate of scalar product
2. The scalar product {f|g)* in general equals:

a) (flg).

008 gmult 00200 1 4 3 easy deducto-memory: what operators do
3. “Let’s play Jeopardy! For $100, the answer is: It changes a vector into another vector.”

a) What is a wave function, Alex?

) What is a scalar product, Alex?

) What is an operator, Alex?

) What is a bra, Alex?

) What is a telephone operator, Alex?

b
c
d

€

008 gmult 00300 2 1 5 moderate memory: Hermitian conjugate of product
4. Given general operators A and B, (AB)! equals:

008 gmult 00400 2 5 5 moderate thinking: general Hermitian conjugation
5. The Hermitian conjugate of the operator A|¢){(x|¥){¢|A (with X a scalar and A an operator) is:

a) Alg)(x|v)(¢|A.
b) Alo)(x|w)(£|AT.
c) AW x)(s|A".
d) Al )(s]A.
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AN (SIA*

008 gmult 00500 1 1 5 easy memory: compatible observables
6. Compatible observables:

a)
)
)
)
)

o & o T

anticommute.

are warm and cuddly with each other.

have no hair.

have no complete simultaneous orthonormal basis.
commute.

008 gmult 00600 1 1 3 easy memory: parity operator
7. The parity operator IT acting on f(z) gives:

a)

€

b)
c)
d) 0
)

df /dz.
1/f(x).
fl=z).

a spherlcal harmonic.

008 gmult 00700 1 4 3 easy deducto-memory: braket expectation value
8. Given the position representation for an expectation value

@ = ¥ereu@d

what is the braket representation?

((?|<F*|(?>

008 gmult 00800 1 4 3 easy deducto-memory: Hermitian eigenproblem
9. What are the three main properties of the solutions to a Hermitian operator eigenproblem?

a)

b)

¢)

(i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed
orthogonal, except for those governed by degenerate eigenvalues and these can always be
orthogonalized. (iii) The eigenvectors DO NOT span all space.

(i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors span all space in ALL cases.

(1) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors span all space for ALL FINITE-DIMENSIONAL spaces. In
infinite dimensional cases they may or may not span all space.

(i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed
orthogonal, except for those governed by degenerate eigenvalues and these can always be
orthogonalized. (iii) The eigenvectors span all space in ALL FINITE-DIMENSIONAL
spaces. In infinite dimensional cases they may or may not span all space.

(i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized.

008 gmult 00900 1 4 5 easy deducto-memory: definition observable
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10. “Let’s play Jeopardy! For $100, the answer is: A physically significant Hermitian operator
possessing a complete set of eigenvectors.”

a) What is Hermitian conjugate, Alex?
b) What is a bra, Alex?

c) What is a ket , Alex?

d) What is an inobservable, Alex?
)

e) What is an observable, Alex?

008 gmult 01000 1 4 4 easy deducto-memory: time-energy inequality
11. In the precisely-formulated time-energy inequality the At is:

a) the standard deviation of time.

b) the standard deviation of energy.

c) a Hermitian operator.

d) the characteristic time for an observable’s value to change by one standard deviation.
)

e) the characteristic time for the system to do nothing.

Full-Answer Problems

008 gfull 00010 1 1 0 easy memory: what is a ket?
1. What is a ket (representative general symbol [¥}))?
008 gfull 00015 1 1 0 easy memory: what is a bra?
2. What is a bra? (Representative general symbol {(¥|.)
008 gfull 00020 1 1 0 easy memory: why the braket formalism?
3. Why is quantum mechanics at the advanced level formulated in the braket formalism?
008 gfull 00030 2 5 0 moderate thinking: Hermiticity and expectation values
Extra keywords: (Gr-94:3.21)
4. For T to be a Hermitian operator one requires that 71 = T'. Recall the definition of Hermitian
conjugate for a general operator @) is

(a]Q'18) = (BlQla)" ,

where |a) and |3) are general vectors.

a) Prove if T'is Hermitian, that expectation value of a general vector |a}),

T

is pure real.

b) Prove if the expectation value
(YT

is always pure real for general |v), that T is Hermitian. This is the converse of the statement
in part (a). HINT: Let |a) and |3) be general and construct a |) = |a) + ¢|3), where ¢ is a
general complex scalar. Expand both sides of

(€ITe) = (€ITM ey = (€ITMe)

use the condition that all expectation values are pure real, and construct two equations that
must both hold: one for ¢ = 1 and one for ¢ = ¢. Solve the two equations.

c) What simple statement follows from the proofs in parts (a) and (b)?
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008 gfull 00040 2 3 0 moderate math: solving an eigenproblem

5.

Extra keywords: (Gr-94:3.22) also diagonalizing a matrix.

Consider
1 1—1
T_<1—|-i 0 )

b) Solve for the eigenvalues. Are they real?

a) Is 7" Hermitian?

c) Determine the normalized eigenvectors. Since eigenvectors are not unique to within a phase
factor, the marker insists that you arrange your eigenvectors so that the first component
of each is 1. Are they orthogonal?

d) Using the eigenvectors as columns construct the inverse of a unitary matrix transformation
which applied to T' gives a diagonalized version of 7. Find this diagonalized version 7.
What is special about the diagonal elements?

e) Compare the determinant det|7T'|, trace Tr(T'), and eigenvalues of T to those of 7.

008 gfull 00500 2 5 0 moderate thinking: x-op in general formalism

6.

Extra keywords: and k-op and p-op in general formalism too

The general formalism of quantum mechanics requires states to be vectors in Hilbert spaces and
dynamical variables to be governed or determined (choose your verb) by observables (Hermitian
operators with complete sets of eigenstates: i.e., sets that form a basis for the Hilbert space).
These requirements are a Procrustian bed for the position, wavenumber (or momentum), and
kinetic energy operators. These operators have complete sets of eigenvectors in a sense, but
those eigenvectors arn’t in any Hilbert space, because they can’t be normalized. Nevertheless
everything works out consistently if some identifications are made. The momentum and kinetic
energy eigenstates are the same as the wavenumber eigenstates, and so we won’t worry about
them. The momentum and kinetic energy eigenvalues are different, of course.

NOTE: Procrustes (he who stretches) was a robber (or cannibal) with a remarkable bed that
fit all guests—by racking or hacking according to whether small or tall. Theseus fit Procrustes
to his own bed—and this was before that unfortunate incident with the Minotaur.

a) Consider the z, eigenproblem in the general form
Zop|z) = z|2) |

where z is the eigenvalue and |z} is the eigenvector. The eigenvalues z and eigenvectors
|z)’s form continuous, not discrete, sets. The unity operator for the o, basis is therefore

1= [ drle)al,

where it 1s implied that the integral is over all space. An ideal measurement of position
yields z and, by quantum mechanical postulate, puts the system is in state |z). But the
system can’t be really be in an unnormalizable state which is what the |z)’s turn out to
be. The system can be in an integral linear combination of such states.

Expand a general state |¥) in the o, basis and identify what |¥) is in the position
representation. Then identify what the inner product of two z, eigenvectors (z'|z) must
be. Why can’t the |z) be in the Hilbert space? What is the position representation of |z)?
Prove that z, in the position operator is just z itself.

b) Repeat part (a), mutatis mutandis, for kqp.
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c) What must {z|k) be? This is just an identification, not a proof—there are no proofs.
HINT: Expand |¥) in the wavenumber representation and then operate on |¥) with (z|.

d) What is (k|k') if we insert the position representation unit operator given the answer to
part (c).

e) In order to have consistency with past work what must the matrix elements (x|kop|z),
(z|Hoplz), and (k|zop|k) be. Note these are just identifications, not proofs—there are

no proofs. We omit {k|Hqp|k)—you’re not ready for (k|Hop|k) as Jack Nicholson would
snarl—if he were teaching intro quantum.

008 gfull 00100 2 5 0 moderate thinking: expectation values two ways
Extra keywords: (Gr-108:3.35)
7. Consider the observable ) and the general NORMALIZED vector |¥). By quantum
mechanics postulate, the expectation of @Q”, where n > 0 is some integer, for |¥) is

Q") = (T[Q"]T) .

a) Assume @ has a discrete spectrum of eigenvalues ¢; and orthonormal eigenvectors |g;). It
follows from the general probabilistic interpretation postulate of quantum mechanics, that
expectation value of @™ for |¥) is given by

Q)= ZQ?I(%I‘I’HZ :

Show that this expression for (@™} also follows from the one in the preamble. What is
5= @i ¥)|? equal to?

b) Assume @ has a continuous spectrum of eigenvalues ¢ and Dirac-orthonormal eigenvectors
lg). (Dirac-orthonormal means that {¢'|¢) = §(¢' — q), where §(¢’ — q) is the Dirac delta
function. The term Dirac-orthonormal is all my own invention: it needed to be.) Tt
follows from the general probabilistic interpretation postulate of quantum mechanics, that
expectation value of @™ for |¥) is given by

<Q">=/dqq"|<q|\1’>|2-

Show that this expression for (@™} also follows from the one in the preamble. What is
[ dq |{g|¥)|* equal to?

008 gfull 00200 2 5 0 moderate thinking: simple commutator identities
8. Prove the following commutator identities.

a) [A, B] = —[B, A].

b) EaiAi, E b;B;| = Zaibj [A;, B;], where the @;’s and b;’s are just complex numbers.
i i ij

c) [A,BC] = [A, B]C + B[A,C].

d) [A,[B,C]]+ [B,[C,A]] + [C,[A, B]] = 0. This has always seemed to me to be perfectly

useless however true.
e) (c[A, B])t = ¢*[B1, A1), where c is a complex number.

f) The special case of the part (e) identity when A and B are Hermitian and ¢ is pure
imaginary. Is the operator in this special case Hermitian or anti-Hermitian?
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008 gfull 00300 3 5 0 tough thinking: nontrivial commutator identities

Extra keywords: (Gr-111:3.41) but considerably extended.
Prove the following somewhat more difficult commutator identities.

Given

[B,[A,B]]=0, prove [A,F(B)] = [A, B]JF'(B) ,

where A and B are general operators aside from the given condition and F(B) is a general
operator function of B. HINTS: Proof by induction is probably best. Recall that any function
of an operator is (or is that should be) expandable in a power series of the operator: i.e.,

F(B)=Y_f.B",
n=0

where f, are constants.
b) [z,p] = ih.
c) [z,p"] = ifinp"~1. HINT: Recall the part (a) answer.
d) [p,2"] = —ifinz"~'. HINT: Recall the part (a) answer.

008 gfull 01400 3 5 0 tough thinking: general uncertainty principle

10.

You have a strange looking operator:

,_ 09 R
AQ AR
where () and R are general Hermitian operators, AQ and AR are the standard deviations of @
and R, and
IQ=Q —{(Q) and JR=R-{(R).

a

(a)

(b) Show ¢t¢ a Hermitian operator and that it is a positive definite operator: i.e, that
(¢1¢) > 0 . HINT: If you have to think about these results for more than a few seconds,
then just assume them and go on.

Write down the Hermitian conjugate £1.

(c) Multiply out ¢7¢ and gather the cross terms into a commutator operator. Substitute
for @ and dR in the commutator using their definitions and simplify it.

(d) Evaluate the expectation value of the multiplied out ¢1¢ operator. Simplify it
remembering the definition of standard deviation.

(e) Remembering the positive definite result from part (b), find an inequality satisfied by
AQAR.

(f) Since the whole of the foregoing mysterious procedure could have been done with @ and
R interchanged in the definition of £, what second inequality must be satisfied by AQAR.

(g) What third AQAR inequality is implied by two previous ones.

008 gfull 01500 2 3 0 moderate math: x-H uncertainty relation

11.

Extra keywords: (Gr-110:3.39)

Answer the following questions.

a) What is the uncertainty relation for operators # and H? Work it out until the expectation
value 1s for the momentum operator p.
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b)

What is the time-dependent expression for any observable expectation value (@) =
(U(t)|Q|¥(t)) when the state |¥(¢)) is expanded in the discrete set of stationary states
(i.e., energy eigenstates) with their time-dependent factors included to allow for the time
dependence of |¥(t)). Let the set of stationary states with explicit time dependence be
{e=#Fit/T|$.)}. Note functions of ¢ commute with observables: observables may depend
on time, but they don’t contain time derivatives.

If state |¥(2)) from part (b) is itself the stationary state e=#Fit/” |¢;), what the expectation
value? Is the expectation value time independent?

Derive the special form of the uncertainty relation for operators x and H for the case of
a stationary state of H? What in fact is oy for a stationary state? HINT: Remember
Ehrenfest’s theorem.

008 gfull 01600 3 5 0 tough thinking: neutrino oscillation
Extra keywords: (Gr-120:3.58)

12. There are systems that exist apart from 3-dimensional Euclidean space: they are internal degrees
of freedom such intrinsic spin of an electron or the proton-neutron identity of a nucleon (isospin:

see,

e.g., En-162 or Ga-429). Consider such an internal system for which we can only detect

two states:

=) b= ()

This internal system is 2-dimensional in the abstract vector sense of dimensional: i.e., it can be

described completely by an orthonormal basis of consisting of the 2 vectors we have just given.

When we measure this system we force it into one or other of these states: i.e., we make the

fundamental perturbation. But the system can exist in a general state of course:

a)

b)

[¥(t) = ct(@)[+) +e-()|—) = <ZJ_r 8)

Given that |¥(t)) is NORMALIZED what equation must the coefficients ¢4 (¢) and c_ (¢)
satisfy. HINT: I don’t want Schrodinger’s equation as an answer.

For reasons only known to Mother Nature, the states we can measure (eigenvectors of
whatever operator they may be) |+) and | — { are NOT eigenstates of the Hamiltonian
that governs the time evolution of internal system. Let the Hamiltonian’s eigenstates (i.e.,
the stationary states) be |+) and |—'): i.e.,

H|+)=Er[+)  and  H|-)=E_|-),

where F; and E_ are the eigen-energies. Verify that the general state |¥(¢)) expanded in
these energy eigenstates,

|\If(t)> — C+€—iE+t/7i|+l> + C_e—iE_t/ﬁ|_l>
satisfies the general vector form of the Schrodinger equation:
0
z'ﬁaﬂl(t» = H|¥()) .

HINT: This requires a one-line answer.

The Hamiltonian for this internal system has no differential operator form since there is no
wave function. The matrix form in the |+) and |—) representation is

n=(14)
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Given that H is Hermitian, prove that f and g must be real.

d) Solve for the eigenvalues (i.e., eigen-energies) of Hamiltonian H and for its normalized
eigenvectors |+') and |-’} in column vector form.

e) Given at ¢t = 0 that

show that

1 . 1 )
W) = (D) VAT a0

V2
and then show that
_ —ift)% cos(gt/h) —isin(gt/T)
() =e [a (—isin(gt/'ﬁ) +b cos(gt/h) ’
HINT: Recall the time-zero coefficients of expansion in basis {|¢;)} are given by {¢;|¥(0)).

f) For the state found given the part (e) question, what is the probability at any time ¢ of
measuring (i.e., forcing by the fundamental perturbation) the system into state

HINT: Note a and b are in general complex.

g) Set a = 1 and b = 0 in the probability expression found in the part (f) answer. What is
the probability of measuring the system in state |[+)7 in state |[—)? What is the system
doing between the two states?

NOTE: The weird kind of oscillation between detectable states we have discussed is a simple
model of neutrino oscillation. Just as an example, the detectable states could be the electron
neutrino and muon neutrino and the particle oscillates between them. Really there are three
flavors of neutrinos and a three-way oscillation may occur. There is growing evidence that
neutrino oscillation does happen. (This note may be somewhat outdated due to that growth of
evidence.)
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Multiple-Choice Problems

009 gmult 00100 1 4 1 moderate deducto-memory: constant of the motion
1. What are the conditions for observable @) to be a constant of the motion.

]=0 and 9Q/dt = 0.
) [H,Q]# 0 and 9Q/dt # 0.
) [H,Q] > 0and 8Q/dt > 0.
) [H,Q]< 0and 8Q/dt < 0.
) [H,Q] > 0and 8Q/dt > 0.

Full-Answer Problems

009 gfull 00100 3 5 0 tough thinking: time evolution, virial theorem
Extra keywords: (Gr-117:3.53)
1. Answer the following questions On the road to the Virial Theorem (starring Bing Crosby, Bob
Hope, and Dorothy Lamour). HINTS: The answers to the earlier parts help answering the
later parts. But you can still answer some later parts even if you don’t get all the earlier parts.

a) Given that e~"P»t/™|¢, ) a stationary state (i.c., an eigen-energy state) of a time-
independent Hamiltonian with its time-dependence factor explicitly shown, show that the
expectation value for this state of any time-independent operator A is a constant with
respect to time: i.e.,

HINT: This is easy.

b) Given that |¢,) is a stationary state of H and A is a general operator, show that

HINT: This is easy.
c) Prove that [A, BC] = [A, B]C + B[A, C] for general operators A, B, and C.
d) Prove [z,p] = if.
e) Prove that

f) Prove that
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Starting general time evolution equation (or general equation of motion)

show that
d{zp)

dt :2<T>_<Iaa_‘;> ’

where T'= p?/(2m) is the kinetic energy operator.

Show that
d{zp) _ d{px)

dt dt

HINT: This is easy.
Now for a STATIONARY STATE prove the 1-d virial theorem:

1 ov
T stationary — o \ £ 5~ '
< ) tat Y 2 <l Oz >stationary

HINT: Don’t forget part (a) and what the general equation of motion says.

Given potential V(z)  z*, show that the virial theorem reduces to

N | >

<T>stationary = <V>stationary :



Chapt. 10 Measurement

Multiple-Choice Problems

010 gmult 00100 1 1 1 easy memory: fundamental perturbation
1. In an ideal quantum mechanical measurement of an observable A:

a) the measurement always detects an EIGENVALUE of the observable and projects the
system into an EIGENSTATE of the observable corresponding to that eigenvalue.

b) the measurement always detects an EXPECTATION VALUE of the observable and
projects the system into an EIGENSTATE of the observable.

c) the measurement always detects an EXPECTATION VALUE of the observable and
projects the system into an NON-EIGENSTATE of the observable.

d) the measurement always detects an 3 EIGENVALUES of the observable and projects
the system into an NON-EIGENSTATE of the observable.

e) The measurement always detects an EXPECTATION VALUE of the observable and
projects the system into a STATIONARY STATE.

Full-Answer Problems

60
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Multiple-Choice Problems

011 gmult 00100 1 4 3 easy deducto-memory: central force
1. In a central force problem the force depends only on:

a) the angle of the particle.
b) the vector 7 from the center to the particle.
) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e
)

C

the uncertainty principle.

011 gmult 00200 1 1 2 easy memory: separation of variables
2. The usual approach to getting the eigenfunctions of the Hamiltonian in multi-dimensions is:

a) non-separation of variables.

) separation of variables.

) separation of invariables.

) non-separation of invariables.
)

=)

C

o,

e) non-separation of variables/invariables.

011 gmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
3. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrodinger equation
in relative/center-of-mass coordinates.”

a) How do you reduce a ONE-BODY problem to a TWO-BODY problem, Alex?
b) How do you reduce a TWO-BODY problem to a ONE-BODY problem, Alex?
¢) How do you solve a one-dimensional infinite square well problem, Alex?

d) How do you solve for the simple harmonic oscillator eigenvalues, Alex?

e) How do you reduce a TWO-BODY problem to a TWO-BODY problem, Alex?

011 gmult 00310 1 4 4 easy deducto-memory: reduced mass
4. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = myms.

b) m = 1/myma.

c) m = (my + may)/mima.
)

)

jal

m = myms/(m1 + ma).
e) m=1/m;.

011 gmult 00400 1 4 2 easy deducto memory: spherical harmonics
5. The eigensolutions of the angular part of the Hamiltonian for the central force problem are:

a) the linear harmonics.
b) the spherical harmonics.
c) the square harmonics.

61
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d) the Pythagorean harmonics.
e) the Galilean harmonics.

011 gmult 00500 1 4 3 easy deducto memory: spherical harmonic Yy
6. Just about the only spherical harmonic that people remember—and they really should remember
1t too—is Ygo =:

a) e'm?.
b) rZ.
c) 1/\/4n.

d) 6%

e) 2aq3/2¢=r/a,

011 gmult 00900 1 4 3 easy deducto-memory: s electrons
7. “Let’s play Jeopardy! For $100, the answer is: What the £ = 0 electrons (or zero orbital angular
momentum electrons) are called in spectroscopic notation.”

a) What are the Hermitian conjugates, Alex?
b) What Herman’s Hermits, Alex?

c) What are s electrons, Alex?

d) What are p electrons, Alex?

)

e) What are h electrons, Alex?

011 gmult 01000 1 4 2 easy deducto-memory: spdf designations
8. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

£=0,1,2,3,4,...

are designated by:

a) a, b, c, d, e, etc.

) s, p, d, f, and then alphabetically following f: i.e., g, h, etc.
)z, Yy, z, zx, Yy, 2z, rrT, cte.

) A, C, B, D, E, etc.

) $Q@%&*!!

Full-Answer Problems

011 gfull 00090 2 5 0 moderate thinking: 2-body reduced to 1-body problem
Extra keywords: (Gr-178:5.1)
1. The 2-body time-independent Schrodinger equation is
52 #2
——V%V/ - .—V§1/) + Vl/) = Etotall/) .
2m2

2m1

If the V' depends only on ¥ = 75 — r1 (the relative vector), then the problem can be separate
into two problems: a relative problem 1-body equivalent problem and a center-of-mass 1-body
equivalent problem. The center of mass vector is

mi7T1 + mars

R=
M bl

where M = mi + ms.
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a) Determine the expressions for 71 and 7 in terms of R and 7.

b) Determine the expressions for V# and V2 in terms of V2 (the center-of-mass Laplacian
operator) and V? (the relative Laplacian operator). Then re-express kinetic operator
2 2
I I
__vQ _ _vZ
2777,1 ! 2777,2 2
in terms of V2, and V2. HINTS: The z, y, and z direction components of vectors can all
be treated separately and identically since X and x depend only on z; and x5, etc. You

can introduce a reduced mass to make the transformed kinetic energy operator simpler.

c) Now separate the 2-body Schrédinger equation assuming V' = V(7). What are the solutions
of the center-of-mass problem? How would you interpret the solutions of the relative
problem? HINT: I'm only looking for a short answer to the interpretation question.

011 gfull 00100 2 3 0 moderate math: solving the azimuthal component

2.

Extra keywords: solving the azimuthal component of the central force problem
In the central force problem the separated azimuthal part of the Schrodinger equation is:

o
dg?

is the constant of separation for the azimuthal part. The constant has been
parameterized in terms of m (which is not mass) since it turns out that for normalizable (and
therefore physically allowed) solutions that m must be an integer. The m quantity is the z-
component angular momentum quantum number or magnetic quantum number (MEL-59). The
latter name arises since the z-components of the angular momentum manifest themselves most
noticeably in magnetic field phenomena.

= —m2<1>(¢) ,

where —m?

a) Solve for the ®(¢) solutions. Why can we rule out complex m? HINT: Use an exponential
trial function.

b) Impose the condition that the solutions be single-valued for all physically distinct azimuthal
angles in order to obtain the allowed values of m. Note this condition, although seemingly
very natural, cannot be justified just from considering the azimuthal solution alone since
physically we only need that |®(¢)|? be single-valued for physically distinct azimuthal
angles. The requirement that polar angle solutions be normalizable (i.e., square-integrable)
implies that the ®(¢) solutions be single-valued. The justification is given by, e.g., Griffiths
(see Gr-126-127).

c) Normalize the allowed ®(¢) solutions. Note the ®(¢) solutions are in fact conventionally
left unnormalized: i.e., the coefficient of the special function that is the solution is left as
just 1. Normalization is conventionally imposed on the total angular solution.

d) Show that ®(¢) solutions are also eigenfunctions of the z-component of the angular
momentum:
[
Lz = —i .
i 0¢

What are the eigenvalues?

011 gfull 01000 3 5 0 tough thinking: the nearly rigid rotator

3.

You have a 3-dimensional system consisting of two non-identical particles of masses m; and
msy. The two particles form a nearly rigid rotator. The relative time-independent Schrodinger
equation for the system is:

2
n19 (4,0 2 ~
[_EEE <7’ E) + —Q/JT’Q + V(T) \I/(T,Q,QS) = E\Il(r’g’(b) ,
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where 7, 0, and ¢ are the relative coordinates, y = mymsg/(my + m2) is the reduced mass, and
the potential is

a)

f)

V(r):{o’ for r € [a — Aa/2,a+ Aa/2];

oo, otherwise.

Assume that Aa is so much smaller than a that L?/(2ur?) ~ L?/(2pa?). Now separate
the equation into radial and angular parts using E.,q and Ey; as the respective separation
constants: Frag + Frot = F. Let the radial solutions be R(r). You know what the angular
solutions should be. Write down the separated equations.

For the radial equation assume that r varies so much more slowly than R over the region

of non-infinite potential that

10 ([ ,0R\ _ 9’R

r? Or (r 37“) = or?
in that region. Change the coordinate variable to = r—(a—Aa/2) for simplicity: the non-
infinite region of the potential then is then the z range [0, Aa]. With this approximation
solve for the radial eigenstates and eigen-energies. Normalize the eigenstates. HINTS:

Holy déja vue all over again Batman, it’s the 1-dimensional infinite square well problem.
Don’t mix up a and Aa.

Write down the eigenstates (just their general symbol, not expressions) and eigen-energy
expression for the rotational equation. What is the degeneracy of each eigen-energy?
HINTS: You shouldn’t being trying to solve the equation. You should know what the
eigenstates are.

Write the general expression for the total wave function. How many quantum numbers
does it depend on?

Write down the general expression for the total energy. Which causes a greater change in
energy: a change of 1 in the quantum number controling the radial energy or a change
of 1 in the quantum number controling the rotational energy? Remember Aa << a by
assumption.

Sketch the energy level diagram.
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Multiple-Choice Problems

012 gmult 00050 1 1 1 easy memory: hydrogen atom, 2-body
1. The hydrogen atom is the simplest of all neutral atoms because:

a) it is a 2-body system.
) it is a 3-body system.
c) it has no electrons.
)
)

=)

oL

it has many electrons.

e) 1t 1s the most abundant element in the universe.

012 gmult 00100 1 1 3 easy memory: radial wave function requirements
2. What basic requirements must a radial function meet in order to be a physical radial wave
function?

a) Satisfy the radial part of the Schrédinger equation and grow exponentially as r — oo.

b) Not satisfy the radial part of the Schrédinger equation and grow exponentially as r — co.
c) Satisfy the radial part of the Schrodinger equation and be normalizable.

d) Not satisfy the radial part of the Schrédinger equation and be normalizable.

e) None at all.

012 gmult 00190 1 1 2 easy memory: hydrogen wave functions
3. The hydrogen wave functions contain a factor that causes them to:

a) increase exponentially with radius.

) decrease exponentially with radius.
c) increase logarithmically with radius.
)
)

=)

oL

increase quadratically with radius.

e) increase linearly with wavelength.

012 gmult 00200 1 4 1 easy deducto-memory: associated Laguerre polyn.
4. What special functions are factors in the radial equation of the hydrogenic atom?

a) The associated Laguerre polynomials.
b) The unassociated Laguerre polynomials.
c) The associated jaguar polynomials.

d) The unassociated jaguar polynomials.
e) The Hermite polynomials.

012 gmult 01000 1 4 1 easy deducto-memory: atomic spectroscopy
5. Almost all would agree that the most important empirical means for learning about atomic
energy eigenstates is:

a) spectroscopy.
b) microscopy.
c) telescopy.
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d) pathology.
e) astrology.

Full-Answer Problems

012 gfull 00100 1 1 0 easy memory: separation of two body problem.
1. The full Schrodinger equation for the hydrogenic atom is a function of two positions, one for
the electron and one for the nucleus. What must one do to turn the problem into a central force
problem for one body?

012 gfull 00200 2 5 0 moderate thinking: how does jr; vary with n?
2. How does the mean radius (expectation value radius) (r),¢m for the hydrogenic atom vary with
increasing n (i.e., with increasing energy)?

012 gfull 00300 2 1 0 moderate memory: H atom quantum numbers
3. What are the 3 quantum numbers of the hydrogenic atom derived from the spatial Schrodinger
equation?

012 gfull 00400 2 1 0 moderate memory: s electron polar plot
4. Sketch the polar plot for an s electron (i.e., an £ = 0 electron)?

012 gfull 00500 2 5 0 moderate thinking: rotating or standing wave functions
5. Are the hydrogenic wave functions U, rotating wave or standing wave functions?

012 gfull 00600 2 5 0 moderate thinking: rotating or standing wave functions
6. Can there be hydrogenic atom stationary-state standing wave functions?

012 gfull 00700 2 5 0 moderate thinking: what is the Bohr magneton?
7. What is the Bohr magneton?

012 gfull 00800 2 5 0 moderate thinking: atomic magnetic moments
8. Why should an atom have a magnetic moment?

012 gfull 00900 1 3 0 easy math: first 4 Laguerre polynomials keyword first 4 Laguerre polynomials,
Rodrigues’ formula
9. Using Rodrigues’ formula for Laguerre polynomials (NOT Legendre polynomials) determine
the first 4 Laguerre polynomials.

012 gfull 01000 3 3 0 tough thinking : separation of external potential
Extra keywords: separation of external potential, 1st order expansion

10. Consider the initial hydrogenic-atom Schrodinger equation where the position variables are still
for the nucleus and electron. Say we add perturbation potentials V;,(7y,) for the nucleus and
Ve (7.) for the electron. We further specify that these perturbation potentials vary only linearly
with position. How would one have to treat these potentials in order to transform to the center-
of-mass/relative coordinate system and separate the Schrédinger equation? HIN'TS: Have you
heard of the Taylor’s series? You’ll have to express the 7, and 7. in terms of relative and center
of mass coordinates.

012 gfull 01200 2 3 0 moderate math: s electron in nucleus
Extra keywords: (Gr-142:4.14)



11.

Chapt. 12 The Hydrogenic Atom 67

Let’s consider the probability that the electron of a hydrogenic atom in the ground state will
be in the nucleus. Recall the wave function for ground state is

1
W100(F) = Rio(r)Yoo(0, ¢) = 2a=3/%e7"/7 x T

where a = aponr/Z: aBohr & 0.529A is the Bohr radius and 7 is the nuclear charge.

a) First assume that the wave function is accurate down to » = 0. Tt actually can’t be of
course. The wave function was derived assuming a point nucleus and the nucleus is in fact
extended. However, the extension of the nucleus is of order 10® times smaller than the
Bohr radius, and so the effect of a finite nucleus is a small perturbation. Given that the
nuclear radius is b, calculate the probability of finding the electron in the nucleus. Use
€ = 2b/a to simplify the formula. HINT: The formula

i n 2
= Hhdt=n!|1—e" r
g(n,z) /0 e n ( e Z 7

£=0
could be of use.

b) Expand the part (a) answer in ¢ power series and show to lowest non-zero order that

1, 4 b\’
P(T’<b,€<<1):6€3:§<a) .

c) An alternate approach to find the probability of the electron being in the nucleus is assume
¥(7) can be approximated by ¥(0) over nucleus. Thus

P(r<b)~ (47”) b2 W (0)]* .

Is this result consistent with the part (b) answer?

d) Assume b ~ 1075 m and a = 0.5 x 1071m. What is the approximate numerical value
for finding the electron in the nucleus? You can’t interpret this result as “the fraction of
the time the electron spends in the nucleus.” Nothing in quantum mechanics tells us that
the electron spends time definitely anywhere. One should simply stop with what quantum
mechanics gives: the result is the probability of finding the electron in nucleus.

012 qfull 01300 3 5 0 tough thinking: derivation of quantum J current

12.

Extra keywords: derivation of quantum J current, correspondence principle

Let’s see if we can derive the probability current density from the correspondence principle.
Note that the classical current density is given by ;.:1 = Uapa. (a) First off we have to figure
out what the quantum mechanical p and ; are classified as in quantum mechanics? Are they
operators or wave functions or expectation values or are they just their own things? Well
they may indeed be just their own things, but one can interpret them as belonging to one
of the three mentioned categories. Which? (b) Well now that part (a) is done we can use
the correspondence principle to find an operator corresponding to classical fd. What are the
the appropriate operators to replace the classical po and ¥ with (i.e., how are pq and ¥
quantized)? (c) Have you remembered the quantization symmetrization rule? (d) Now go to it
and derive the quantum mechanical j You might find the 3-d integration-by-parts rule handy:

/wvxdvz/xpxd[f— VUydV ,
1% A 1%

where fV is for integral over all volume V and fA is for integral over all vectorized surface area
of volume V.
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Multiple-Choice Problems

013 gmult 00100 1 1 4 easy memory: ang. mom. commutation relations
1. The fundamental angular momentum commutation relation and a key corollary are, respectively:

a) [Ji,J;] =0 and [J2, 1) = J;.

[Ji, 5]
b) [Ji, J;] = Ji and [J%, Ji] = 0.
) [Ji, J;] =0 and [J2, J;] = 0.
d) [Ji, J;] = iheijnJg and [J2, J;] = 0.
e) [wi,p;j] = iNdij, [zi, ;] = 0, and [p;, p;] = 0.

013 gmult 01000 1 1 5 easy memory: rigid rotator eigen-energies
2. For a rigid rotator the rotational eigen-energies are proportional to:

a) 1.

Full-Answer Problems

013 gfull 00090 2 5 0 moderate math: kroneckar delta, Levi-Civita
1. There are two symbols that are very useful in dealing with quantum mechanical angular
momentum and in many other contexts in physics: the Kroneckar delta:

_J1, =g
% = { 0, i#J
and the Levi-Civita symbol

1, ifdjk is a cyclic permutation of 123 (3 cases);
gijk =1 —1, if ijk is an anticyclic permutation of 123 (3 cases);
0, if any two indices are the same.

NOTE: Leopold Kroneckar (1823-1891) was a German mathematician although born in what
is now Poland. Tullio Levi-Civita (1873-1941) was an Italian mathematician: the “C” in Civita
is pronounced “ch”.

a) Prove §;;0;x = 0;i, where we are using Einstein summation here and below, of course.

b) Now the toughie. Prove
€ijkEitm = 0500km — OjmOke .
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HINTS: I know of no simple one or two line proof. The best I've ever thought of was
to consider cases where jkmf span 3, 1, and 2 distinct values and to show that the two
expressions are equal in all cases.

c) Now the cinchy one. Prove
€ijkEijm = 20km -

d) What does €;;5¢;;% equal? Note there is Einstein summation on all indices now.

013 gfull 00100 2 5 0 moderate thinking: angular momentum operator identities
2. Prove the following angular momentum operator identities. HINT: Recall the fundamental
angular momentum commutator identities:

[Ji, J;] = iheijn i and [Jz, Ji]=0,

and the definition
Jr=J £y

) [J?, Jx] =

) [Tz, Je] = ﬂ:ﬁjﬂ:

) JLJe =Jzde =J? = J.(J. £ h).
)

00 T

1
Jo=g(Je +J2)

Jy= s = J0)
£) [Jy,J_] = 2%J..
g)
{ =+ (J++J + [, J-])

where recall that [A, Bl = AB + BA is the anticommutator of A and B.
h)

1
J? = 5[J+,J_]+ +J?.

013 gfull 00200 2 3 0 mod math: diagonalization of .J; for 3-d
Extra keywords: diagonalization of the J-x angular momentum matrix for 3-d
3. The z-component angular momentum operator matrix in a three-dimensional angular
momentum space expressed in terms of the z-component orthonormal basis (i.e., the standard
basis with eigenvectors [1}, |0}, and | — 1)) is

I

Jo= —&
V2

0 1 0
10 1
0 1 0
Is this matrix Hermitian? Diagonalize this matrix: i.e., solve for its eigenvalues and normalized
eigenvectors (written in terms of the standard basis ket eigenvectors) or, if you prefer in column
vector form. Note the solution is somewhat simpler if you solve the reduced eigen problem.

Just divide both sides of the eigen equation by #/v/2 and solve for the reduced eigenvalues.
The physical eigenvalues are the reduced ones times 71 //2.

Verify that the eigenvectors are orthonormal.
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NOTE: Albeit some consider 1t a sloppy notation since kets and bras are abstract vectors
and columns vectors are a concrete representation, its concretely useful to equate them at times.
In the present case, the kets equate like so

1 0 0
=101, oy=111], and |-1)=10],
0 0 1
and the bras, like so
(1] = (1,0,0)", (0] = (0,1,0)" , and (=1 =(0,0,1)" .

013 gfull 00300 2 3 0 mod math: diagonalization. of J, for 3-d

4.

Extra keywords: diagonalization of the J-y angular momentum matrix for 3-d

The y-component angular momentum operator matrix in a three-dimensional angular
momentum space expressed in terms of the z-component orthonormal basis (i.e., the standard
basis with eigenvectors [1}, |0}, and | — 1)) is:

Jy=—|i 0 =i
V2Zlo i o

Is this matrix Hermitian? Diagonalize this matrix: i.e., solve for its eigenvalues and normalized
eigenvectors (written in terms of the standard basis kets) or, if you prefer in column vector
form. Verify that the eigenvectors are orthonormal. Note the solution is somewhat simpler if
you solve the reduced eigen problem. Just divide both sides of the eigen equation by #/+/2 and
solve for the reduced eigenvalues. The physical eigenvalues are the reduced ones times 7 /+/2.

NOTE: Albeit some consider 1t a sloppy notation since kets and bras are abstract vectors
and columns vectors are a concrete representation, its concretely useful to equate them at times.
In the present case, the kets equate like so

1 0 0
=101, oy=111], and |-)=10],
0 1
and the bras, like so
(1]=(1,0,0)" , (0] =(0,1,0)" , and (—1]=(0,0,1)" .

013 gfull 00400 2 3 0 mod math: angular momemtum eqn. of motion

5.

Extra keywords: (Gr-150:4.21) torque
Let’s consider the angular momentum equation of motion in in the context of quantum
mechanics.

a) Prove that
dLy .
a
where I = 7 x 7 is the angular momentum operator and 7 = # x (=VV) is the torque
operator.

b) Then prove that
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for any central potential system: i.e., a system where the potential depends on radius alone.

HINTS: You’ll need to use the general time evolution equation—or equation of motion or
derivative of expectation value: whatever one calls it—people do seem to avoid giving it a name.
Then you will need to work out a commutation relation with a cross product operator. There
are two approaches. First, show what the commutation relation is component by component.
But that’s for pedestrians. The second way is to use the Levi-Civita symbol with the Einstein
summation rule to prove the all commutation relations simultaneously. Part (a) is most easily
done using Cartesian coordinates and part (b) using spherical polar coordinates.

013 gfull 00500 2 3 0 moderate thinking: orbital angular momentum

6.

Extra keywords: expectation values, standard deviations, quantum and classical analogs
Consider a spinless particle in an eigenstate |¢,m) of the L? and L, operators: ¢ is the L?
quantum number and m the L, quantum number. The set of |[¢,m) states are a complete
orthonormal set for angular coordinates. Recall

L2|6,m) = £+ )T |e,m)
L.|¢,m) =mh|t, m)
Lilt,m) =T\l +1)—m(m+ )|, m=+1),

and
Ly =1Ls%x1ily .

a) Solve for expectation values (L), and (L,), and standard deviations AL, and AL,.
HINTS: You will need expressions for L, and Ly in terms of the given operators. Also
the everything can be done by operator algebra: there is no need to bring in the spherical
harmonics or particular representations of the operators.

b) Let us now see if there are classical analogs to the results in part (a). Let classical

L,=mh ,

Ly = TE(L+ 1) — m? cos(o)

and
L, = h\/L(£+ 1) — m?sin(¢) ,

where ¢ is the azimuthal angle of the angular momentum vector. Note L2 + Lg + 12 =
£(£+1). Now solve for the classical (L) and (L, ), and the classical AL, and AL, assuming
(i) that ¢ is random in the range [0, 27] and (ii) that ¢ = wt where w is a constant angular
frequency.
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Multiple-Choice Problems

014 gmult 00100 1 4 1 easy deducto-memory: Goudsmit and Uhlenbeck, spin

1.

“Let’s play Jeopardy! For $100, the answer is: Goudsmit and Ulhenbeck.

a) Who are the original proposers of electron spin in 1925, Alex?

b) Who performed the Stern-Gerlach experiment, Alex?

c) Who are Wolfgang Pauli’s evil triplet brothers, Alex?

d) What are two delightful Dutch cheeses, Alex?
)

e) What were Rosencrantz and Gildenstern’s first names, Alex?

014 gmult 00200 1 1 5 easy memory: eigenvalues of spin 1/2 particle
2. The eigenvalues of a component of the spin of a spin 1/2 particle are always:

a) +7.

b) +%/3.
c) +n/4.
d) +7/5.
e) +7h/2.

014 gmult 00300 1 4 2 easy deducto-memory: spin and environment
3. Is the spin (not spin component) of an electron dependent on the electron’s environment?

a) Always.

b) No. Spin is an intrinsic, unchanging property of a particle.
c¢) In atomic systems, no, but when free, yes.

d) Both yes and no.
)

e) It depends on a recount in Palm Beach.

Full-Answer Problems

014 gfull 00100 2 3 0 mod math: diagonalization of y Pauli spin matrix

1.

Extra keywords: (CDL-203:2), but it corresponds to only part of that problem
The y-component Pauli matrix (just the y-spin matrix sans the 7/2 factor) expressed in terms
of the z-component orthonormal basis (i.e., the standard z-basis with eigenvectors |+) and |—))

is:
0 —2
w=\i o .

Diagonalize this matrix: i.e., solve for its eigenvalues and NORMALIZED eigenvectors written
in terms of the standard z-basis eigenvector kets or, if your prefer, in column vector form for
the z-basis. One doesn’t have to literally do the basis transformation of the matrix to the
diagonal form since, if one has the eigenvalues, one already knows what that form is. In
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quantum mechanics, literally doing the diagonalization of the matrix is often not intended by a
diagonalization.

014 gfull 00200 2 3 0 mod math: spin 1/2, spin Sy + Sy.

2.

Extra keywords: (Ga-241:9), spin 1/2, spin S; + S, diagonalization

Consider a spin 1/2 system. Find the eigenvectors and eigenvalues for operator S; + S,. Say
the system is in one of the eigen-states for this operator. What are the probabilities that an S,
measurement will give 71 /27

014 gfull 00210 1 5 0 easy thinking: electron spin in B-field Hamiltonian

3.

Extra keywords: electron spin in magnetic field Hamiltonian

What is the Hamiltonian fragment (piece, part) that describes the energy of an electron magnetic
moment in a magnetic field. This fragment in a Schrodinger equation can be separated from the
rest of the equation and solved as separate eigenvalue problem. Assume the intrinsic angular
momentum operator is S and the magnetic field points in the z direction. HINTS: Think of the
classical energy of a magnetic dipole in a magnetic field and use the correspondance principle.
This is not a long question. This question needs rethinking. It’s probably OK, but I've got to
study Baym p. 310-315ff carefully.

014 gfull 00300 2 5 0 moderate thinking: classical Larmor precession

4.

Let’s tackle the classical Larmor precession.
a) What is Newton’s 2nd law in rotational form?

b) What is the torque on a magnetic dipole moment /i in a magnetic field B? HINT: Any
first-year text will tell you.

c) Say that the magnetic moment of a system is given by i = 'yf, where 7 is some constant and
L is the system’s angular momemtum. Say also that there is a magnetic field B= (0,0, B;).
Solve for the time evolution of L using Newton’s 2nd law in rotational form assuming the
initial condition E(t =0) = (Ls,0,0,L;0) with Ly o > 0. HINT: You should get coupled
differential equations for two components of L. There not so hard to solve. For niceness
you should define an appropriate w.

014 gfull 00400 3 5 0 tough thinking: quantum mech. Larmor spin precession

5.

Extra keywords: Larmor spin precession

Consider a spin 1/2 particle with magnetic moment M= 'yg. The spin space is spanned by the
orthonormal basis vectors |[4+) and |—) of the observable S, with eigenvalues +7/2: this basis
is the standard spin basis. At a time ¢ = 0, the state of the system is |¥(¢ = 0)) = |[+).

(a) If the observable Sy is measured at time ¢ = 0, what eigenvalues can be found with what
probabilities and what is the expectation value?

(b) Say that there is a magnetic field with only a nonzero y-component B,,. The system evolves
under the influence of this field. Find the Hamiltonian for the system, calculate the time-
dependent state |¥(¢)) expanded in the eigenvectors of the Hamiltonian AND then expanded
in the eigenvectors of the standard z basis. HINT: It would be good idea to define an w. Also
you will have to repeat part of (a) to find the time zero expansion coefficients. Perhaps recalling
the classical expression for the potential energy of magnet moment in a magnetic field will help:

U=-M-B.

(c) At a general time ¢ we could measure observables S;, Sy, and .S,. What are the eigenvalues
we would observe and with what probabilities? What are the expectation values for the three
observables? What is the physical interpretation of the state of the system?
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Multiple-Choice Problems

015 gmult 00100 1 1 1 easy memory: time-independent perturbation
1. Time-independent weak-coupling perturbation theory assumes that the stationary states and
eigen-energies of a system can be expanded in convergent power series in a perturbation
parameter about, respectively:

a) the stationary states and eigen-energies of a solvable system.

) the eigen-energies and stationary states of an unsolvable system.
c) the origin.
d) the center.

e) infinity.

001 gmult 00200 1 1 5 easy memory: zeroth order perturbation
2. The zeroth order perturbation of a system is:

a) the most strongly perturbed system.
) the mostest strongly perturbed system.
) the deeply disturbed system.

d) the negatively perturbed system

e) the unperturbed system.

015 gmult 00300 1 1 2 easy memory: 1st order energy correction
3. The expression

Ert = B + My | HO 30y
is:

a) the eigen-energy of eigen-state n to Oth order in perturbation AH®),
b) the eigen-energy of eigen-state n to 1st order in perturbation AH,
c) the energy of eigen-state n to 2nd order in perturbation AHM),

d) the eigen-state n to Ist order in perturbation AH),

e) the eigen-state n to 2nd order in perturbation AH),

015 gmult 00400 1 4 4 easy deducto-memory: 1st order eigen state correction
4. The expression

; (i [H i)
™y = [¥V) + A E ko—(o)h/)k)
all k, k#n Ly
is:
a) the eigen-energy of eigen-state n to Oth order in perturbation AH®),
b) the eigen-energy of eigen-state n to lst order in perturbation MH),
c) the energy of eigen-state n to 2nd order in perturbation AHM),
d)
)

the eigen-state n to 1st order in perturbation AH (1),
e) the eigen-state n to 2nd order in perturbation AH (1),

74



Chapt. 15 Time-Independent Approximation Methods 75

015 gmult 00500 1 1 3 easy memory: 2nd order energy correction
5. The expression

d (o]
B2 = B+ MeQHW My + 27 Y © _ 70
all k, k#n En’ — By

1S:

a) the eigen-energy of eigen-state n to Oth order in perturbation AH®),
b) the eigen-energy of eigen-state n to 1st order in perturbation AHM,
c) the energy of eigen-state n to 2nd order in perturbation AHM),

d) the eigen-state n to Ist order in perturbation AH),

e) the eigen-state n to 2nd order in perturbation AHM),

015 gmult 00600 1 4 1 easy deducto-memory: degeneracy and perturbation
6. “Let’s play Jeopardy! For $100, the answer is: A common cause for the obvious failure of
time-independent weak-coupling perturbation theory.”

a) What is degeneracy, Alex?
b) What is perversion, Alex?
c) What is subversion, Alex?
d) What is lunacy, Alex?
e) What is regency, Alex?

015 gmult 00700 1 1 3 easy memory: equivalent postulates
7. If two postulates are said to be equivalent, then

a) one can be derived from the other, but not the other from the one.

b) the other can be derived from the one, but not the one from the other.
c) each one can be derived from the other.
d) neither can be true.

)

e) both must be true.

015 gmult 00800 1 4 5 easy deducto-memory: variational principle
8. “Let’s play Jeopardy! For $100, the answer is: Usually the demand that an action (or action
integral) be stationary with respect to arbitrary variation in a function appearing somehow in
the integrand.”

a) What is a Hermitian conjugate, Alex?

b) What is an unperturbation principle, Alex?
c) What is a perturbation principle, Alex?

d) What is an invariation principle, Alex?

e) What is a variational principle, Alex?

015 gmult 00900 1 1 3 easy memory: quantum mechanics action
9. In non-relativistic quantum mechanics the action of the usual variation principle is:

a) the integral of angular momentum.

b) the derivative of angular momentum.

) the expectation value of the Hamiltonian.
d) the time independent Schrodinger equation.
e) the Dirac equation.

C
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015 gmult 01000 1 1 1 easy memory: stationary action
10. An exact solution |¢) to the time-independent Schrodinger equation is the one that by the
variational principle in quantum mechanics makes the action

(ol
B0)= 151y

be stationary with respect to:

) arbitrary variations of the state |¢) (i.e., d E(¢) = 0).
b) some variations of the state |¢).
c) no variations of the state |@).
d)

)

Q

reasonable variations of the state |¢).

e) unreasonable variations of the state |@).

015 gmult 01100 1 1 5 easy memory: simple variational method
11. In the simple variational method one takes a parameterized wave function and finds the
parameters that make the expectation value of the Hamiltonian:

a) a maximum.

b) 1.

c) negative.
d) positive.

e) a minimum.

015 gmult 01200 1 4 3 easy deducto-memory: linear variation method
12. “Let’s play Jeopardy! For $100, the answer is: The justification for the linear variational method
(or Rayleigh-Ritz method or truncated Hamiltonian matrix eigen-problem).”

a) What is Hermitian conjugation, Alex?
) What is bra/ket notation, Alex?
at is the quantum mechanics variational principle, Alex?
What is th t hani iational principle, Alex?
) What is the Dirac principle, Alex?
at is the cosmological principle, Alex?
) What is th logical principle, Alex?

b
c
d

€

015 gmult 01500 1 4 1 easy deducto-memory: repulsion energy levels
13. Any perturbation applied to a two-level system that is initially degenerate causes:

a) a repulsion of the energy levels.
b) an attraction of the energy levels.
c) a warm and affectionate relationship between the energy levels.
d) a wonderful, meaningful togetherness of the energy levels.
)

e) an eternal soul-bliss of the energy levels.

Full-Answer Problems

015 gfull 00100 2 5 0 moderate thinking: what is a perturbation?
1. What is a perturbation?

015 gfull 00200 2 5 0 moderate thinking: basic perturbation hypothesis
2. What is the basic non-degenerate perturbation method hypothesis?

015 gfull 00300 2 5 0 moderate thinking: smallness parameter
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3. What is role of the smallness parameter in non-degenerate perturbation theory?

015 gfull 00400 2 5 0 moderate thinking: 2nd bigger than 1st
4. If all the 2nd order non-degenerate perturbation corrections are greater than the 1st order ones,
what might you suspect?

015 gfull 00500 2 5 0 moderate thinking: 2nd bigger than 1st all zero
5. If all the 2nd order non-degenerate perturbation corrections are greater than the 1st order ones,
but the 1st order ones were all identically zero, what might you suspect?

015 gfull 00600 1 5 0 easy thinking: equivalent results
6. If two different looking theorems or postulates were said to be equivalent what would that
mean?

015 gfull 00700 2 5 0 moderate thinking: variational principle and method
7. Are the variational principle and the variational method the same thing? Explain please.

015 gfull 00800 1 5 0 easy thinking: what is a stationary point?
8. What does it mean to say a function is stationary at a point?

015 gfull 00800 2 3 0 moderate math: differentiation
9. Take the derivative of )
5 & 1 9 9
~ 4ma? + 14
and determine the stationary point. Just by imagining the function’s behavior in the large
and small a limits determine whether the stationary point is a minimum. Give the analytic

expression for F(a) at the stationary point.

E(a)

015 gfull 00900 2 5 0 moderate thinking: Snell’s law and var. princ.
10. Can Snell’s law be derived using the variational principle (or a variational principle “as you
prefer”)? Please explain.

015 gfull 01000 2 5 0 moderate thinking: Schr”od. and var. princ.
11. Can the time-independent Schrodinger’s equation be derived using the variational principle?
Please explain.

015 gfull 01100 2 5 0 moderate thinking: expand in basis

12. Convert the braket eigenproblem H|¥) = E|¥) to the discrete {|u;}} orthonormal basis
representation by expanding |¥) in terms of the |u;) kets and then operating on the equation
with the bra {(u;].

015 gfull 01200 1 5 0 easy thinking: solving infinite matrix problem
13. Can one literally solve in a numerical procedure an infinite matrix problem: 1.e. a problem with
an infinite number of terms to number crunch? Why so or why not?

015 gfull 01300 1 5 0 easy thinking: diagonalization defined
14. What is meant by diagonalization in quantum mechanics?

015 gfull 01400 2 3 0 moderate math: Dirac delta perturbation
Extra keywords: (Gr-225:6.1) Dirac delta perturbation, 1-dimensional infinite square well
15. Say you have a one-dimensional square well with

oo, otherwise.

V(z) = {0, for the z range 0 to a;
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a)
b)

Solve for the stationary states from the Schrodinger equation.

Say we add Dirac delta function perturbation
HY = ¢(z —a/2) .

What is the general expression for this perturbation for the first order perturbation energy
correction?

015 gfull 01410 3 5 0 tough thinking: 2-particle Dirac delta perturbation
Extra keywords: (Gr-226:6.3)

16. The single particle stationary states and eigen-energies for a 1-dimensional infinite square well
for region [0, a] are, respectively,

a)

P () = \/gsin (na—ﬂ-m) and E, = g (g)2 n? .

What is the expression for elementary 2-particle stationary states for NON-identical
particles of the same mass? (Label the particles a and b for convenience and assume
the particles are spinless. Label the states n and n’ for convenience too.) What is the
general expression for the energy of such 2-particle states? What are all the possible
reduced energies (i.e., n? +n'?) up n = n’ = 77 These energies can be called energy levels:
the levels may correspond to more than one state. (You are permitted to use a computer
program to generate these.) Are there any degeneracies with these energies? Remember
the particles are not identical.

Now suppose we turn on a perturbation potential for the non-identical particles of the form
7O = V(:L‘a, :Eb) = (lvoa(l‘a — éL‘b) .
What is the expression for the diagonal matrix element

H(nn’)(nn’) = <1/)nn’(xa; mb)|H(1)|wnn’(xa: $6)> .

If you expand sin f in exponentials evaluating, the matrix element is pretty easy, but you do
have to treat the cases where n # n’ and n = n’ a bit differently. Given the diagonal matrix
elements can you do (weak-coupling) perturbation theory on all the 2-particle states?

What is the expression for elementary 2-particle stationary states for identical spinless
bosons? (Label the particles a and b for convenience. Note we have turned off the
perturbation.) What is the general expression for the energy of such 2-particle states?
What are all the possible reduced energies (i.e., n? +n'?) up n = n’ = 77 (You don’t have
to do part (a) all over again, just mutatis mutandis it.) Are there any degeneracies with
these energies? Remember the particles are identical.

Now suppose we turn on a perturbation potential of part (b) for the identical bosons. What
is the expression for the diagonal matrix element

H(nn’)(nn’) = <1/)nn’(xa7 xb)|H(1)|wnn’(Iaa Ib)> .

If you expand sin @ in exponentials evaluating, the matrix element is pretty easy, but you
do have to treat the cases where n # n’ and n = n’ a bit differently. Note the perturbation
correction is a bit different from the non-identical particle case. Why? Given the matrix
elements can you do (weak-coupling) perturbation theory on all the 2-particle states?

What is the expression for elementary 2-particle stationary states for identical fermions
when we assume spin coordinates are identical. Since the spin coordinates are identical,
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the spin part of the single particle states are symmetrical. Don’t bother writing down
spinors or such. (Label the particles a and b for convenience. Note we have turned off
the perturbation.) What is the general expression for the energy of such 2-particle states?
What are all the possible reduced energies (i.e., n? + n'?) up n = n’ = 77 (You don’t have
to do part (a) all over again, just mutatis mutandis it.) Are there any degeneracies with
these energies? Remember the particles are identical.

f) Now suppose we turn on a perturbation potential of part (b) for the identical fermions.
What is the expression for the diagonal matrix element

H(nn’)(nn’) = <1/)nn’(xaamb)|H(1)|wnn’(xa:$6)> .
Don’t whine: this is easy if you see the trick. Why do you get the simple result you

get? Given the matrix element, can you do (weak-coupling) perturbation theory on all the
2-particle states?

g) What does the Dirac delta potential
V(zg — 2p) = aVo(xq — xp)

imply or do physically?

015

17.

qfull 01500 1 3 0 easy math: SHO 1st order perturbation cx
Extra keywords: SHO 1st order perturbation cz
Say you add a perturbation potential cz to a 1-dimensional simple harmonic oscillator (SHO)
system. Calculate all the first order weak-coupling perturbation corrections for the eigen-
energies. Recall the 1st order perturbation energy correction is given by

B = (OO0 =0,

where the [1/2) are unperturbed eigenstates. HINT: Think about the parity of SHO energy
eigenstates.

015

18.

qfull 01600 2 3 0 mod math: SHO exact cx perturbation
Extra keywords: (Gr-227:6.5), SHO, linear perturbation cz, exact cx solution

Say you added a perturbation H(") = cz to the 1-dimensional simple harmonic oscillator (SHO)
Hamiltonian, and so have
2 1
H = ;m + §mw2m2 + cx

for the Hamiltonian. An exact solution to the time independent Schrodinger equation is in fact
possible and easy since the new problem is still a SHO problem.

Let’s consider just the mathematical aspects of the problem first. Given a quadratic
2

Yy = azx

with a > 0, where is its minimum and roots? Say you now add bz to get
_ 2
y=axr’ +bx .

Where are the minimum and roots now? By measuring the horizontal coordinate from a new
origin is it possible to eliminate the linear dependence on the horizontal coordinate? Find this

new origin. From a geometric point of view what have you done by adding bz to y = ax?
what has happened to the parabola on the plane?

D le.,
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Now that the math is clear what about the physics. What are the classical forces associated
with the potentials
1
imwzxz , cx and imwzxz +cx?

What are the equilibrium points of the forces? What are the potential energies of the first and
third equilibrium points? What has adding the cz potential done to the potential well of the
SHO? How could you reduce the problem with the third potential to that with the first?

Now reduce time independent Schrodinger problem with the given Hamiltonian to the SHO
problem. What are the solutions in terms of horizontal coordinate distance from the new origin
and what are eigen-energies of the solutions? (I don’t mean solve for the solutions. Just what
are known solutions for reduced problem.)

015 gfull 01700 3 3 0 mod math: SHO and 2nd order perturbation cx

19.

Extra keywords: SHO and 2nd order perturbation cx

Say you add a perturbation potential cz to a 1-dimensional simple harmonic oscillator (SHO)
system. Give the formula for the 2nd order weak coupling perturbation correction for this
special case simplified as much as possible. HINT: You will probably find the following matrix
element formula for SHO eigenvectors useful:

max(k,n) . o
(W], = ——— iflk—n|=1;

S wl—

otherwise,

where f = {/mw/T (e.g., Mo-406).

015 gfull 03000 3 3 0 tough math: SHO and 2nd order z3 pre-perturbation

20.

Extra keywords: SHO and 2nd order z3 pre-perturbation

In preparation for calculating the 1st order perturbation wave function correction and the 2nd
order perturbation energy correction for the 1-dimensional simple harmonic oscillator (SHO)
system with perturbation potential cz?, one needs to find a general expression for

(r]a®|vn) -
Find this expression simplified as much as possible.
INSTRUCTIONS: You will need the following to formulae (which I hope are correct)
1

NeT: (Vn + 141 (2) + Vvn_1(z)] = 2, (z)

and o+ 1
n .
W if k=n;
2 o p—
(g |x*|n) = \/[max(k,n) 1] max(k,n) if [k n| = 2
232
0 otherwise,

where 3 = y/mw/T. There are seven initial cases (one being zero) to find and five final cases
after combining initial cases with same k and n relation. Write the expressions in terms of n,
not k. You will simply have to work carefully and systematically to grind out the cases. What
is the appropriate Kronecker delta function to go with each case so that one can put them
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in a sum over k in the 2nd order perturbation formulae? Make the Kronecker deltas in the
form dg t(n) where f(n) is an expression like, e.g., n — 1. Since k in the sum for the 2nd order
perturbation runs only from zero to infinity is there any special treatment needed for including
cases with Kronecker deltas like 0y ,—1 for n = 0?7 HINT: Are such cases ever non-zero when
they should be omitted?

015 qfull 03100 3 3 0 mod math: SHO and 2nd order cz3 perturbation
Extra keywords: SHO and 2nd order cz? perturbation
21. The following result is for simple harmonic oscillator eigenvectors:
3n+Hvn+1 if k =n+ 1 with g py1;
3n/n if k=n—1 with o p_1;
1
3 _ ; o q - )
(Vx| |Yn) = SWelE \/(n +1)(n+2)(n+3) if k=n-+3 with dg ,43;
(n=2)(n—1)n if k =n — 3 with dg p_3;
0 otherwise.
Using this expression find the general expression for the SHO for the 2nd order weak-coupling
perturbation corrections to the eigenstate energies for a perturbation potential cz®. Why can
you use the expression above without worrying about the fact that sum over states from zero
to infinity doesn’t include states with index less than zero.
015 gfull 03110 2 5 0 moderate thinking: 4x4 eigenproblem/perturbation
22. You are given a zeroth order Hamiltonian matrix
100 O
@_ (0 1 0 0
n = 0 01 O
0 0 0 -1

a) Solve for the eigenvalues and normalized eigenvectors by inspection. You should label the
states 1, 2, 3, and 4 for convenience. Is there any degeneracy and if so what the degenerate
states?

b) The evil wizard of physics now turns on a perturbation and the Hamiltonian becomes

1 ¢ 0 0

e 1.0 0

= 0 0 1 € '

0 0 ¢ -1
where € is a small quantity. Solve for the exact eigenvalues and normalized eigenvectors in
this case. Is there any degeneracy now? HINT: Is there any reason why the two 2x2 blocks
in the matrix cannot be treated as separate eigenvalue problems and the two-component
eigenvectors extended trivially for the 4 x 4 problem?

c) Do weak-coupling perturbation theory to solve for the energy to 2nd order for any initial
eigenstates which are not degenerate. HINT: All the perturbation matrix elements can
be found in the part (b) question.

015 gfull 03200 2 5 0 moderate thinking: simple variational method, excited states
23. The simple variational method can in principle be applied to excited states.

a) Say an unnormalized trial wave function |¢) is orthogonal to all energy eigenstates |¢;)
of quantum number less than n, where the eigen-energies increase monotonically with
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quantum number as usual. Show that Fina > E, where Fia) is the expectation value of
the Hamiltonian for ). When will the equality hold? Remember there is such a thing as
degeneracy.

b) Using the simple variational method for finding excited eigenstate energies isn’t really of
general interest since constructing trial functions with the right orthogonality properties
is often harder than using the other approaches. However, if the eigenstates have definite
parity, definite parity trial wave functions can be used to determine the lowest eigen-energies
for wave functions of each kind of parity.

For example, let us consider the simple harmonic oscillator problem in one dimension.
We know that the eigenstates are non-degenerate and have definite parity. It is given that
the ground state has even parity and the first excited state has odd parity. We can use
an odd trial wave function and the variational method to approximately determine the
energy of the first excited state. The simple harmonic oscillator eigenproblem in scaled

dimensionless variables is )
d 2
(<) v=re.

mw Eon
r=4/—=x and E="2% —on41.
Vo o Tiw/2

The n is the SHO energy quantum number (n runs 0,1,2,3,...) and the “phy” stands for
physical. Consider the odd trial wave function

where

where ¢ i1s a variational parameter. Normalize this trial wave function, evaluate its
expectation energy, and minimize the expectation energy by varying ¢. How does this
variational method energy compare to the exact result which in scaled variables is 3.
HINT: There are no wonderful tricks in the integrations: grind them out carefully.

015 gfull 03300 3 5 0 tough thinking: perturbation and variation

24.

Extra keywords: (Gr-235:6.9)

Consider quantum system of 3 dimensions with initial Hamiltonian

100
HO=10 1 0
0 0 2
and perturbed Hamiltonian
1—¢ 0 O
H= 0 1 €
0 € 2

Note we assume € << 1. Also note that H(®) and H are matrix Hamiltonians: i.e., Hamiltonians
in a particular representation. The matrix elements are <¢i|Hég)|¢k>. (¢i|Hop|Pk), respectively,
where Hég) and H,p, are operator versions of the Hamiltonian and {|¢;)} are some orthonormal
basis. Usually we drop the “op” subscript and allow context to tell whether the Hamiltonian is
in matrix or operator representation.

Solve by inspection for the eigen-energies and eigenvectors of the initial unperturbed
Hamiltonian. To help with the rest of the problem label the states 1, 2, and 3 in some sensible
order.
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Solve for the exact eigen-energies and normalized eigenvectors of the perturbed Hamiltonian.
No need to be too explicit about the eigenvectors. HINTS: It’s not so hard—if you don’t make
a mistake in the first step.

Expand the exact eigen-energies and eigenvectors (where applicable) to 2nd order in small e.
(Note T mean Taylor expansion, not perturbation series expansion although the two expansion
are closely related in this case.) Simplify the eigenvectors to nice forms so that it is easy to see
which perturbed vector grew out of which unperturbed vector as € grew from 0.

Determine from (weak-coupling) perturbation theory the energies to 2nd order and the
eigenvectors to 1st order of the perturbed Hamiltonian. How do these results compare with
those of the part (c) answer? HINT: Perturbation theory can be applied to the degenerate
states in this case because they are completely uncoupled.

Now use the truncated Hamiltonian matrix method (or linear variational method) to find
approximate eigen-energies and eigenvectors for the two initially degenerate eigen-energy states.
To what order goodness in small € are the results? Why the are results for one perturbed state
exact and for the other rather poor compared to the exact results?

gfull 04000 3 5 0 tough thinking: variational hydrogen
Extra keywords: (Ha-327:4.1)

. We know, of course, the ground state for the hydrogenic atom sans perturbations:

1
47

1/)an = (2a—3/2)6—r/a )

where a = ag/[(m/m,.)Z] is the radial scale parameter: ag = ﬁz/(meez) = ACompton/(2ma) =
0.529 A is the Bohr radius, m is the reduced mass, and Z is the nuclear charge (Gr-128, 141).
But as a tedious illustration of the simple variational method, let us try find an approximate
ground state wave function and energy starting with the trial Gaussian wave function

Y= Ae=P/

a) Can we obtain the exact solution with a trial wave function of this form?
b) The varied energy is given by
G _ [ R ) () dr

(¥ly) Jo" [o(r) o (r)] (4mr2) dr

where H is the Hamiltonian for £ = 0 (i.e., the zero angular momentum case) given by

219 ,0  Ze?
—_—— -
2mrZdr  Or r
Note the varied energy form does not require a Lagrange undetermined multiplier since
we are building the constraint of normalization into the variation. We, of course, need

to evaluate A later to normalize the minimized wave function. Convert the varied energy
expression into a dimensionless form in terms of the coordinate z = r/a and reduced
varied energy €, = Ey/[Ze?/(2a)] = Z=%(m/m.)Ey/Frya ~ Z~%(m/m.)E,/(13.606 V).

HINT: A further integration transformation can make the analytic form even simpler.

c) Find the explicit analytic expression for €,. Sketch a plot of ¢, as a function of 3. HINT:
Use an integral table.

d) Now find the minimizing 8 value and the minimum ¢,. Compare ¢, to exact ground state
value which is —1 in fact.
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Multiple-Choice Problems

016 gmult 00100 1 1 4 easy memory: Fermi, person identification
Extra keywords: Fermi, person identification
1. Who was Enrico Fermi?

a) An Italian who discovered America in 1492.

b) An Ttalian who did not discover America in 1492.
c) An Ttalian-American biologist.

d) An Ttalian-American physicist.

e) Author of Atoms in the Family.

016 gmult 00200 1 1 5 easy memory: electric dipole selection rules
Extra keywords: electric dipole selection rules
2. The selection rules for electric dipole transitions are:

a) Al=0and Am = 0.

b) =42 and Am = £1.
=—1and Am=1.
=41 and Am = 0.

Al
Al
Al
Al =41 and Am =0, £1.

c)
d)
)

€

016 gmult 00300 1 1 5 easy memory: harmonic perturbation, sinusoidal
Extra keywords: harmonic perturbation, sinusoidal time dependence
3. Harmonic perturbations have:

a) a linear time dependence.

b) a quadratic time dependence.

) an inverse time dependence.

d) an exponential time dependence.
e) a sinusoidal time dependence.

C

Full-Answer Problems

016 gfull 00100 1 5 0 easy thinking: time-dependent Sch.eqn.
1. Is the time-dependent Schrodinger equation needed for time-dependent perturbation theory?

016 gfull 00200 2 5 0 moderate thinking: energy eigenstates

2. Are stationary states (i.e., energy eigenstates) needed in time-dependent perturbation theory?
Please explain.

016 gfull 00300 2 5 0 moderate thinking: energy eigenstates

84
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What is done with the radiation field in quantum electrodynamics.

016 gfull 00100 2 3 0 easy math: Fermi’s golden rule integral

4.

Extra keywords: Fermi’s golden rule integral, Simpson’s rule

T 12
/ smz:b de
x
The integral is not analytically solvable. One could use a numerical technique like Simpson’s
rule. On the other hand one could simply find a function that is integrable that sort of resembles

the integrand and use that as an approximation. This integral comes up in understanding
Fermi’s golden rule for time-dependent perturbation.

By some means evaluate

014 gfull 00200 3 3 0 tough math: time dependent perturbation, square well

5.

Extra keywords: (MEL-141:5.3), time dependent perturbation, infinite square well
At time t = 0, an electron is in the n = 1 eigenstate of an infinite square well with potential

Viz) = 0, z€][0,d;
oo x> a.

At that time an electric field E pointed in the positive z direction is suddenly applied. Use
1st order time-dependent perturbation theory to calculate the transition probabilities to all
other states as a function of time. HINT: The sinusoidal eigenfunctions can be expressed as
exponentials: let z = w2 /a, and then
inz __ e—inz

21

sin(nz) = ¢

014 gfull 00300 3 5 0 tough thinking: usual and general Fermi’s golden rule

6.

Say we have time-dependent perturbation

0, t<0;
H(t):{H, t >0,

and initial state |¢;), where |@;) is eigenstate belonging to the complete set {|¢;)}. The state
at any time ¢t > 0 is |¥(4)).

a) Work out as far as one reasonably can the 1st order perturbation expression for the
coefficient a;(¢) in the expansion of |¥(¢)) in terms of the set {|¢;}}. Include the case
of i = 7. HINT: The worked out expression should contain a sine function. Define

Wij = (Ez — EJ)/ﬁ
b) Given i # j, find the transition probability (to Ist order of course) from state j to state i.

c) What is this probability at early times when w;;t/2 << 1 for all possible w;;? Describe the
behavior of the probability as a function of time for all times. (You could sketch a plot of
probability as a function of time.) What is the behavior for w;; = 0 (i.e., for transitions to
degenerate states)?

d) Assume there is a high enough density of states that the total transition probability to
states ¢ # j in sum energy interval £, to Ep can be approximated by an integral:

PO =Y PO~ [ PEDE)E,

i EBa
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where p(E) is the density of states per unit energy and where the time-independent part
of the matrix element H;; is replaced by H(E) which is a continuous function of energy.
What is the total transition probability to all states assuming that |H(E)|? and p(E) are
constant and so can be removed from the integral and assuming the lower limit of the
integral can be set to negative infinity with negligible error? (Note you will probably need
to look up a standard definite integral.)

In fact 90 % of the integral (assuming |H(FE)|* and p(E) constant) comes from the
energy range [E; — 2nfi/t, E; 4+ 2nh /t]. (Can you show this by a numerical integration?
No extra credit for doing this: insight is the only reward.) We can see that at some
time the 90 %-range will be so narrow that the approximation |H (E)|? and p(E) constant
will probably become valid. They should clearly be evaluated at ;. Practically, this often
means that the approximation becomes valid when almost all of the transitions are to nearly
degenerate states. Of course, the 90 %-range can become so narrow that the approximation
of a continuum of states breaks down and then the integration becomes invalid again.

What is the rate of transition for (i.e., time derivative of) this total transition
probability? The transition rate result is one of the usual forms of Fermi’s golden rule.
Although it is restricted in many ways, it is still a very usual result: hence golden.

Let’s see if we can derive a Fermi’s golden rule without the restriction that the perturbation
is constant after a sudden turn-on. To do this assume that

H(t)=Hf(t),

where H is now constant with time and f(¢) is a real turn-on function with the properties
that f(t) = 0 for ¢t < tg and f(¢) = 1 for ¢ > ¢;. Again derive P;(t) leaving it in double
integral form. Then, assuming the exponential in the integrand is sharply peak near Ej),
solve for the total transition probability an integration over energy using p(E) for the
energy density of states again. You will need the result

oo —ikx
a(x):/ £ dk,

oo 2T

where d(z) is the Dirac delta function. What is the total transition probability when
t > t17 What is the total transition rate when ¢ > ¢;7 How does this new Fermi’s golden
rule compare to the one in part (d)?
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Multiple-Choice Problems

017 gmult 00100 1 1 4 easy memory: spin-orbit interaction, hydrogenic atom
Extra keywords: spin-orbit interaction, hydrogenic atom
1. What is the main perturbation preventing the spinless hydrogenic eigenstates from being the
actual ones?

a) The Stark effect.

b) The Zeeman effect.

c¢) The Stern-Gerlach effect.
d) The spin-orbit interaction.
e) The Goldhaber interaction.

017 gmult 00200 2 4 5 moderate deducto-memory: orbital ang. mom., spin
Extra keywords: orbital angular momentum, spin, total angular momentum
2. The scalar product of operators L - .S equals

a) JZ.

b) (L+5)-(L+S5).
o) (L-8)-(L-3).
d) (J2+ L%+ 52)/2.
e) (J?— L% —S2)/2.

017 gmult 00300 1 4 3 easy deducto-memory: spin-orbit good quantum numbers

Extra keywords: spin-orbit interaction, good quantum numbers

“Let’s play Jeopardy! For $100, the answer is: The spin-orbit interaction causes the eigenstates
of the real hydrogen atom to be mixtures of the ¥, states, but one ¥, state is usually
overwhelmingly dominant.

3.

a) Why are the quantum numbers n, £,
Why are the quantum numbers n, £,
Why are the quantum numbers n, £,
Why are the quantum numbers n, £,
Why are the quantum numbers n, ¢,

b)
c)
d)
d)

and m perfectly rotten, Alex?

and m only approximately rotten, Alex?

and m only approximately good, Alex?

and m only indifferent, Alex?

and m dependent on a recount in Palm Beach, Alex?

Full-Answer Problems
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Multiple-Choice Problems

018 gmult 01000 1 4 5 easy deducto-memory: Bose-Einstein condensate
Extra keywords: References Gr-216, CDL-1399, Pa-179
1. “Let’s play Jeopardy! For $100, the answer is: The name for the state of a system of all identical
bosons when the bosons all settle into the ground state.”

a) What is a Hermitian conjugate, Alex?
b) What is a Hermitian condensate, Alex?
c) What is a Rabi-Schwinger-Baym-Sutherland-Jeffery degeneracy, Alex?
d) What is just another state, Alex?
)

e) What is a Bose-Einstein condensate, Alex?

Full-Answer Problems

018 gfull 02000 2 5 0 moderate thinking: symmetrization
Extra keywords: symmetrization of orthonormal single particle states.

1. Say |ai) and |bi) are ORTHONORMAL single particle states, where ¢ is a particle label. The
label can be thought of as labeling the coordinates to be integrated or summed over in an inner
product: see below. The symbolic combination of such states for two particles, one in a and
one in b is

[12) = [a1)[b2) ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but let’s not
worry about that now. The inner product of such a combined state 1s written

(12]12) = (al]al){(b2[b2) .

If one expanded the inner product in the position and spinor representation assuming the wave
function and spinor parts can be separated (which in general is not the case),

(12[12) = [/%(:m)*i/)a(rl)dl‘l(‘3I+ “i-Ja <Cl+>a]

C1—

X [/wb(ff2)*¢b(ff2)dff2(‘3§+ S <62+)b] :

Co_

A lot of conventions go into the last expression: don’t worry too much about them.

a) Let particles 1 and 2 be NON-identical particles. What are the two simplest and most obvious
normalized 2-particle states that can be constructed from states a and 67 What happens if
a=1b (i.e., the two single particle states are only one state actually)?

b) Say particles 1 and 2 are identical bosons or fermions. What is the simplest and most obvious
normalized 2-particle state that can be constructed in either case allowing for the possibility

88
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that @ = b (i.e., the two single particle states are only one state actually)? What happens if
a = b, for fermions.

018 gfull 02100 1 5 0 easy thinking: triplet singlet
Extra keywords: (Gr-181:5.3)
2. Say that we have obtained four orthonormal single particle eigenstates:

and

Va(F) X+
Ya(F)x—
Vo (7) X+

oy (7) x -

where the spinors are

N -

To label a state i’s coordinates by a descriptive label one can write for example

$a(8) ()X +(7) -

Construct 7777

018 gfull 02200 3 5 0 tough thinking: 2-particle infinite square well
Extra keywords: (Gr-182:5.4)
3. The set of individual eigen states for a 1-dimensional, infinite square well confined to [0, a] can
be written |n) where n = 1,2,3,... The energies of the states are given by

(e.g., Gr-26). For convenience Freq(n) = n

a)

b)

E(n) = i (E)znz

" 2m \a

2 can be called the reduced energy of state n.

Say we have two non-interacting particles a and b in the well. Write write down the
Hamiltonian for this case. The particles have the same mass m, but are not necessarily
identical.

The reduced energy of a 2-particle state that satisfy the Schrodinger equation of part (a)
can be written
Ered(n11n2) = n% + n% .

Write a small computer code to exhaustively calculate the possible reduced energy levels
up to and including Fieq = 50 and the n; and ns combinations that yield these energies.
The code should also calculate the degeneracy of each energy for the cases of non-identical
particles, bosons, and fermions. [I’ll left you off easily, accidental degeneracies can be
idendified by eye. (Note: An accidental degeneracy is when a distinct pair of n values (i.e.,
a pair not counting order) gives the same reduced energy.)

Write down the normalized vector expressions for all the 2-particle states up to the 4th
allowed energy level for the cases of non-identical particles, identical bosons, and identical
fermions. Just to get you started the non-identical particle ground state is

|al,b1) = |al)|bl) with Frea =2 .
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018 gfull 02300 3 5 0 tough thinking: exchange force

4.

Extra keywords: (Gr-182)

The exchange force is a pseudo-force that arise because of the symmetry postulate of quantum
mechanics. Say we have orthonormal individual particle states |a) and |b). If we have
distinguishable particles 1 and 2 in |a) and |b), respectively, the net state is

I1,2) = |al)[b2) .

Of course, each of particles 1 and 2 could be in linear combinations of the two states. In that
case the combined state would be a four term state. But we have no interest in pursuing that
digression at the moment. Now 2 indistinguishable particles in states |a) and |b) have no choice,
but to be in a combined symmetrized state by the symmetry postulate:

1
V2
where the upper case is for identical bosons and the lower case for identical fermions. If the two

states are actually the same state |a), then the state for distinguishable particles and bosons is
the same

1,2) = —= (|a1)[b2) & [b1)]a2))

1,2) = Ja1)[a2)
and no state is possible for fermions by the Pauli exclusion principle.

Note products of kets are actually tensor products (CDL-154). In taking scalar products,
the bras with index i (e.g., 1 or 2 above) act on the kets of index i. For example, for the state
|1,2) = |al}|a2) the norm squared is

(1,2[1,2) = {al|al){a2|a2) .

The fact that identical particles must be combined symmetrized states means that their
wave functions will be more or less clumped depending on whether they are bosons or fermions
than if they could be fitted into simple product states like distinguishable particles. (Note we
are not bothering with the complication of spin for the moment. One could say we are letting
all the spins point up for example). This clumping/declumping effect is called the exchange
force. Obviously, it is not really a force, but rather a result of the requirements on allowed
states. Still for some practical purposes one can certainly consider it as force.

Expand (Az?) = ((z1 — 22)?).

For the given states, determine (Az?) for distinguishable particles and, for the case of being
only one single particle state |a), for indistinguishable bosons.

For the given states constructed from distinct single particle states, determine {(Az?) for
indistinguishable bosons and fermions.

018 gfull 02400 2 5 0 moderate thinking: exchange force and infsq well

5.

Extra keywords: (Gr-185:5.5) and the infinite square well
Imagine two non-interacting particles in an infinite square in the range [0, a]. Recall the eigen-

functions for this case are
2 . /nmw
n = 1/ —sin (—m)
a a

for n = 1,2,3,.... Recall also the results of the Gr-182 and Gr-29:2.5 questions.

a) Say the particles are distinguishable and are in states n and m. What is (Az?) = ((z1—22)?)
for this case? What is 1t if n = m?
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b) Say the particles are identical bosons/fermions and are in the only allowed combination of
states n and m. What is (Az?) = ((z1 — 22)?) for this case? What is it if n = m?

018 gfull 02500 2 3 0 mod math: coupled harmonic oscillator

6.

Extra keywords: two identical particles, exact solution
There are two particles subject to separate simple harmonic oscillator (SHO) potentials. They
are also coupled by a SHO interaction. The full Hamiltonian is:

2 2
p p ! 9. 9 9.0 1 2
= —2721 —2722 + imlw?rr{ + imgw?rg + Ek(ml — 1‘2)? ,

where k& > 0 which in this context means the interaction is attractive.

a) Transform to the center-of-mass-relative (CM-REL) coordinates (showing all the steps)
and show that the Hamilton separates into a center-of-mass (CM) SHO Hamiltonian and a
relative (REL) SHO Hamiltonian. Does the problem have an exact solution? Write down
the general expression for the eigen-energies of the total stationary states in terms of the
SHO quantum numbers ncy and ngrgr, for the respective CM and REL parts. Define @ as
the angular frequency of the REL energies.

b) Next write the expression for the eigen-energies in the case that & = 0. Define a new
quantum number n that alone gives the eigen-energy and the degeneracy of the eigen-
energy. What is the degeneracy of an eigen-energy of quantum number n.

c¢) Now assume that k& > 0, but that k/(pw?) << 1. Write down a first order correct expression
for the energy in terms of n and ngrgr. Give a schematic energy-level diagram.

d) Now assume that k/(uw?) >> 1. Give a schematic energy-level diagram in this case.

e) Now assume that the two particles are identical spin-0 bosons. Note that identical means
they now have the same mass. Given the symmetry requirement for boson states, which
solutions (specified by the ncy and nrgr, quantum numbers) are not physically allowed?

f) Now assume that the two particles are identical spin-1/2 fermions. Note again that identical
means they now have the same mass. But also note they arn’t electrons. Their interactions
are determined by the given Hamiltonian only. Because the particles are spin-1/2 fermions,
the eigen wave functions for system must be multiplied by appropriate eigen-spinors to
specify the full eigenstate. Given the antisymmetry requirement for fermion states, what
restrictions are put on the wave function and spinor quantum numbers of an eigenstate?

018 gfull 02600 1 5 0 easy thinking: symmetrization, Slater determinant

7.

Extra keywords: (Gr-187:5.7)

Say that you solve a Schrodinger equation for N identical particles to get the normalized wave
function (71, 72, 73, ..., 7 n). How would you symmetrize the wave function for bosons? Then
how would you symmetrize for fermions all in the spin-up state so that you don’t have spinors
to complicate the question? How would you normalize the wave function?

018 gfull 02700 1 5 0 easy thinking: doubly excite He decay

8.

Extra keywords: (Gr188.58a)

Say you put two electrons into the n = 2 principle quantum number shell of a neutral helium
atom and immediately one electron is ejected and the other decays to the ground of the Het ion.
What approximately is the kinetic energy of the ejected electron. NOTE: Without a detailed
specification of the doubly-excited helium atom we cannot know exactly what the energies of the
excited electrons are. There are two simple approximate choices for their energies: 1) assume
that the energy levels of the singly-excited helium atom apply (see, e.g., Gr-189); 2) assume that
the Z = 2 hydrogenic energy levels apply. The first choice is probably most in error because it
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assumes too much electron-electron interaction: the electrons may further apart in the actual
doubly-excited state; but in fact where they are depends on exactly what doubly excited state
they are in. The 2nd choice is certainly wrong by assuming zero electron-electron interaction.

018 gfull 02800 1 5 0 easy thinking: spectrum of He II

9.

Extra keywords: (Gr-188:58b)

Describe the spectrum of He II (i.e., singly-ionized helium or He®) sans perturbations..

018 gfull 02900 2 5 0 moderate thinking: helium with bosons

10.

Extra keywords: (Gr-188:5.9)
Describe qualitatively how the helium atom energy level diagram would plausibly change under
the following conditions.

a) Say the electrons were spin zero bosons.

b) Say the electrons were spin 1/2 bosons—a contradiction in postulates, but for the sake of
argument have it so.

c) Say the electrons were spin 1/2 fermions, but were quantum mechanically distinguishable
particles. HINT: In this case the answer is going to be pretty much indefinite.

018 gfull 03000 3 3 0 tough math: helium atom 1st order perturbation

11.

Extra keywords: (Gr-188:5.10)
If one neglects the electron-electron interaction of the helium atom then the spatial ground state
is just the product of two hydrogenic states:

! 8 e-rri4raa

e—2(r1+r2)/a _
ra}. /8 mad

w(_‘l; F?) = 1/)100(7?1)1/)100(7?2) =

where ape = a/7 = a/2 is the helium Bohr radius and a is the standard Bohr radius (see, e.g.,
Gr-137-138 and Gr-187). The Ist order perturbation correction to the helium atom ground
state is given by

(H')
where H' is the perturbation Hamiltonian: i.e.,
e? 1
471'60 |F1 — F2|

in MKS units (see, e.g., Gr-187) or
e2
|7 — 77
in Gaussian CGS units. Note that we use e for both fundamental charge unit and the exponential
factor: this is conventional of course: context must decide which is which.

()
|7 — s/

|7 — o] = \/r%—krg —2rirap

a) Analytically calculate

HINTS: Set

where p = cosf is the angle cosine between the vectors. Integrate over all 75 space first
taking 7; as the z axis for spherical coordinates. It helps to switch to dimensionaless
variables earlier on. There are no specially difficulties or tricks: just a moderate number
of steps that have to be done with tedious care.
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b) Now the expression for a hydrogenic energy level, sans perturbations, is

1 72 Z2E, 13.672
En == __mec2a2ﬁ = — yd N —

N 3 eV |
where m, is the electron mass, « is the fine structure constant, 7 is the nuclear charge,
and Eryq &~ 13.6eV is the Rydberg energy (see, e.g., Ga-197). In Gaussian CGS units

e? I
a=— and a=
Tic mecQ

(e.g., Ga-199). What is the energy of the helium atom ground state in terms of Rydberg
energies and eVs?



Chapt. 19 Solids

Multiple-Choice Problems

Full-Answer Problems

019 gfull 00100 2 5 0 moderate thinking: free electron metal
Extra keywords: (Ha-324:2.4)
1. Let us consider a free electron metal in 1, 2, and 3 dimensions simultaneously. Use periodic
boundary conditions and assume “cubical” shape in all three cases. Let L be the length of a
side of the “cube.”

a)

b)

Solve the time-independent Schrodinger equation for the stationary states for all three
cases. Normalize the solutions solutions and give their quantization requirements.

What is p(k): i.e., the density of states per unit volume per unit (radial) wave number in
the continuum of states approximation. Note that (radial) wave number is defined

where ¢ the number of dimensions. HINT: Remember that spatial states are doubly
degenerate because of the 2 internal spin states of spin-1/2 particles.

What is p(E): i.e., the density of states per unit volume per unit energy in the continuum
of states approximation. HINT: One requires the same number of states between any
corresponding limits: i.e.,

p(k)dk = p(E)dE .

019 gfull 00200 2 5 0 moderate thinking: computing Fermi energies
Extra keywords: (Ha-324:2.3) free electron metals
2. The metals Na, Mg, and Al have, respectively 1, 2, and 3 free electrons per atom and volumes
per atom 39.3 A3, 23.0 A3, and 16.6 A®. At zero temperature what is the Fermi energy to which
the free electron states are filled?
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Multiple-Choice Problems

Full-Answer Problems

030 gfull 00100 2 5 0 moderate thinking: eph Bose-Einstein condensate

Extra keywords: Greiner et al. 2002, 415, 39 with Stoof review on p. 25

1. Go to the library 2nd floor reading room and find the 20002jan03 issue of Nature (it may have
been placed under the display shelf) and read the commentary article by Stoof on page 25 about
a quantum phase transition from a Bose-Einstein condensate to a Mott insulator. What do you
think Stoof really means when he says in the superfluid state “atoms still move freely from one
valley to the next”? NOTE: The instructor disavows any ability to completely elucidate this
commentary or the research article by Greiner et al. it comments on.

030 gfull 00200 2 3 0 moderate thinking: eph quantum gravity well

Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297

2. Is the gravity subject to quantum mechanical laws or is it somehow totally decoupled? Everyone
really assumes that gravity is subject to quantum mechanical laws, but the assumption is not
well verified experimentally: in fact it may never have been verified at all until now—mnot that
I would know. The lack of experimental verification is because gravity is so infernally weak
compared to other forces in microscopic experiments that it is usually completely negligible.
Recently Nesviszhevsky et al. (2002, Nature, 413, 297) have reported from an experiment that
a gravity well (at least part of the constraining potential is gravitational) does have quantized
energy states. This appears to be the first time that such an experimental result has been
achieved. It’s a wonderful result. Of course, if they hadn’t found quantization, it would have
been a shock and most people would have concluded that the experiment was wrong somehow.
Experiment may be the ultimate judge of theory, but experiment can certainly tell fibs for
awhile.

Go read Nesviszhevsky et al. in the 2nd floor reading room of the library: the relevant
issue may be under the shelf. If a neutron in the theoretically predicted gravity well made a
transition from the 1st excited state to the ground state and emitted a photon, what would be
the wavelength of the photon? Could such a photon be measured? What classically does such
a transition correspond to?

030 gfull 00300 1 5 0 easy thinking: eph quantum computing
Extra keywords: Reference Seife, C. 2001, Science, 293, 2026
3. Read the article on quantum computing by Seife (2001, Science, 293, 2026) and make an estimate
of how long it will be before for there is a quantum computer that solves a computational
problem not solvable by a classical computer: I'm excepting, of course, any problems concerning
quantum computer operation itself. Give your reasoning. All answers are right—and wrong—or
in a superposition of those two states. My answer is 1 year. HINT: You can probably find the
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issue in the library, but there’s one in the physics lounge near the Britney issue. Primers on
quantum computing can be found by going to

http://www.physics.unlv.edu/~jeffery /images/science
and clicking down through quantum mechanics and quantum computing.

030 gfull 00400 2 5 0 moderate thinking: eph C-70 diffraction

4.

Extra keywords: Reference Nairz et al. 2001, quant-ph/0105061
On the web go to the Los Alamos eprint archive:

http://xxx.lanl.gov/ .
There click on search and then on search for articles by Zeilinger under the quant-ph topic.
Locate Nairz, Arndt, & Zeilinger 2001, quant-ph/0105061 and download it. This is article
reports the particle diffraction for C7g (a fullerene). There should be great pictures on the web
of fullerenes, but the best I could find were at

http://www.sussex.ac.uk/Users/kroto/fullgallery.html
and
http://cnst.rice.edu/pics.html

and these don’t have descriptions. Fullerenes are the largest particles ever shown to diffract:
their size scale must be order-of a nanometer: 10 times ordinary atomic size. The article calls
itself a verification of the Heisenberg uncertainty principle. In a general sense this is absolutely
true since they verify the wave nature of particle propagation. But it isn’t a direct test of the
formal uncertainty relation
Oz0p, Z 5 3

where o0, and o, are standard deviations of z-direction position and momentum, respectively,
for the wave function (e.g., Gr-18, Gr-108-110). Explain why it isn’t a direct test. HINTS:
You should all have studied physical optics at some point. Essentially what formula are they
testing?

030 gfull 00500 1 5 0 easy thinking: bulk and branes

5.

Extra keywords: Reference Arkani-Hamed, N., et al. 2002, Physics Today, February, 35

Go the library basement and read the article by Arkani-Hamed et al. (Physics Today, February,
p. 35). Perhaps a 2nd reading would help or a course in particle physics. Anyway what is the
bulk (not Hulk, bulk) and the brane (not Brain, brane)?

030 gfull 00600 1 5 0 easy thinking: sympathetic cooling

6.

Extra keywords: O’Hara & Thomas, 2001, Science, March 30, 291, 2556
Go to the library or the physics lounge and read O’Hara & Thomas ( 2001, Science, March 30,
291, p. 2556) on degenerate gases of bosons and fermions. What is sympathetic cooling?



Appendix 1 Mathematical Problems

Multiple-Choice Problems

Full-Answer Problems

031 gfull 00100 2 3 0 moderate math: Gauss summations
1. Gauss at the age of two proved various useful summation formulae. Now we can do this too
maybe.

a)

Prove

3

HINT: This is really very easy.

Prove

_ _n(n+1)
sl(n)_Ze_T.

HINT: The trick is to add to every term in the sum its “complement” and then sum those
2-sums and divide by 2 to account for double counting.

Prove

_ = 5 n(n+1)(2n+1)
Sg(n)_;€ = ; .

HINT: A proof by induction works, but for that proof you need to know the result first
and that’s the weak way. The stronger way 1s to reduce the problem to an already solved
problem. Consider the general summation formula

Sk(n) = ka )

For each ¢, you can construct a column of £~ 1’s that is £ in height. Can you add up the
values in the table that is made up of these columns in some way to get Si(n).

Prove
- nZ(n+1)2
Sa(n) = ;_1 2= 7( 1 ) .

HINT: This formula can be proven using the “complement” trick and the formulae of
parts (b) and (c). It can also more tediously be solved by the procedure hinted at in
part (c). Or, of course, induction will work.
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031 gfull 00200 1 3 0 easy math: uniqueness of power series
2. Power series are unique.

a) Prove that coefficients ay of the power series

o

P(z) = Z apz”

k=0

are unique choices given that the series is convergent of course. HINT: The mth derivative
of P(z) evaluated at = 0 can have only one value.

b) Prove that coefficients ag; of the double power series

00,00

P(z,y)= Y apay
k=0,4=0

are unique choices given that the series is convergent of course. HINT: Mutatis mutand:s.

031 gfull 00300 2 5 0 moderate thinking: biderivative formula proof
3. Prove the biderivative formula

d”(fg) B n n dkfdn—kg
dzn _; k/) dxk dxn—*k

by induction.

031 gfull 00400 2 5 0 moderate thinking: integrals of type xe**-2
4. In evaluating anything that depends on a Gaussian distribution (e.g., the Maxwell-Boltzmann
distribution of classical statistical mechanics), one frequently has to evaluate integrals of the

type
o0 2
In:/ e M dr |
0

where n 1s an odd positive integer.
a) Solve for I.

b) Obtaining the general formula for I,, is now trivial with a magic trick. Act on Iy with the

operator
PENCEDIE
(i)

c) From the general formula evaluate Iy I3, I5, and I7.

031 gfull 01000 2 5 0 moderate thinking:
5. In understanding determinants some permutation results must be proven. The proofs are
expected to be cogent and memorable rather than mathematical rigorous.

a) Given n objects, prove that there are n! permutations for ordering them in a line.

b) If you interchange any two particles in a given permutation, you get another permutation.
Let’s call that action an exchange. If you exchange nearest nearest neighbors, let’s call that
a nearest neighbor or NN exchange. Prove that any exchange requires an odd number of
NN exchanges.

c¢) Permutations have definite parity. This means that going from one definite permutation to
another definite permutation by any possible series of NN exchanges (i.e., by any possible
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path) will always involve either an even number of NN exchanges or an odd number: i.e., if
one path is even/odd, then any other path is even/odd. Given that definite parity is true
prove that any path of NN exchanges from a permutation that brings you back to that
permutation (i.e., a closed path) has an even number of NN exchanges.

Now we have to prove definite parity exists. Say there is a fiducial permutation which by
definition we say has even parity. If definite parity exists, then every other permutation is
definitely even or odd relative to the fiducial permutation. If n = 1, does definite parity
hold in this trivial case? For n > 2, prove that definite parity holds. HINTS: It suffices to
prove that going from the fiducial permutation to any other permutation always involves
a definite even or odd path since the fiducial permutation is arbitrary. Proof by induction
might be the best route. I can’t see how brief word arguments can be avoided.

Now prove for n > 2 that there are an equal number of even and odd permutations. HINT:
Consider starting with an even permutation and systematically by an NN exchange path
going through all possible permutations. Then start with an odd permutation and follow
the same NN exchange path.



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore
it neither intended to be complete nor completely explicit. There are fewer symbols than variables,
and so some symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998
. )\Compton 3
Bohr radius ABohr = —————— =0.529A
2T« .
Boltzmann’s constant k =0.8617x 107 5eVK™!
=1381x 107 "SergK™!
h .
Compton wavelength ACompton = —— =0.0246 A
mee
Electron rest energy mec? =5.11 x 105eV
Elementary charge squared e? = 14.40eVA
2
Fine Structure constant o= _;— =1/137.036
W
Kinetic energy coefficient 2 =3.81leVA2
me
2
n =17.62eVA?
me
Planck’s constant h =4.15x 10715 eV
Planck’s h-bar T =6.58 x 1071%eV
he = 12398.42eV A
fic . =1973.27eVA
Rydberg Energy ERryq = §7neczoz2 = 13.606 eV
2 Schrodinger’s Equation
T8 = [ v vy =200 e = [2 vi] v = Fue
z,t) = |5 x xz,t)=1 T )= |5, x x) = x

NY gy = m%m)

oty = | v v = Bew) al) = Bl

3 Some Operators
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)
p==V pP=-0V
i
5 2
H:;g—m—l—V(F) — V4 V(F)

0 0 0 o 19 .~ 1 9
=3 1249 2 2% g <
v $3x+y3y+zﬁz rar—i_ r39+ rsinf 90

v2—a_2+ 62 _}_a_z—iﬁ 73& _1_#& sinﬁé _1_#6_2
T 0x?  Oy? 922 r20r or r2sin § 00 r2sin? 6 O¢?

4 Kronecker Delta and Levi-Civita Symbol

.. 1, 17k cyclic;
dii = {1’ L= Eiik = {—1 17k anticyclic;
ij = : ijk — s )
0, otherwise 0, if two indices the same.
€ijkEitm = 0;00km — OjmOke (Einstein summation on i)
5 Time Evolution Formulae
d{A) 0A 1.
= <_t> 4 %@[H(t),A]} General
d{7 1 d{p
ilz> = —{(p) and @ = —(VV (7)) Ehrenfest’s Theorem
m

(D) = 37 s(0)e= P oy)

6 Simple Harmonic Oscillator (SHO) Formulae

mw g2 1

p= . Yn(z) = W—WH

Ho(Bz) = Ho(§) =1  Hi(Bz) = Hi(§) = 2¢
Hy(Bw) = Ho() =46* =2  Hs(Bx) = Ha(€) = 86> — 12¢

7 Position, Momentum, and Wavenumber Representations



102  Appendix 2 Quantum Mechanics Equation Sheet

p="Tk  Exinetic = Er = [ (p,t)[*dp = |W(k,8)]*dk  ¥(p,

1) =

U(k, 1)

Vi

(e no - .
Top =T Pop = e Qlz,——,t posltion representation

"1 0z’

Yo o .
= -5 Pop = P Q- 7 %, p,1 momentum representation

Top =~ Bp
o ipz/H oo ke
3(z) :/OO el Y :/ o
o cive /T oo ka
U(z,1) :/_OO U(p,1) 2 h)il? p /OO\II 1/2 dk
o c—ipz/ T s ok
U(p,t) = /_Oo U(z,1) @nh)i/? dx = /OO U(z 1/2 dx
iR ik-7
vro= [ IR L=t 0=/ . (;)3/2 &k
) L e —ik -7 5
vE.1) = /all Space\Il(r ’t)m o /11 space )3/2 o

8 Commutator Formulae

[A, BC] = [A, B]C + B[A, C] [Z a;Ai,y bij] =" a;bi[A;, by]

if  [B,JA,B]=0 then [A, F(B)]=[A,B]F(B)
[e,p] =i [z, f(p)] =ifif'(p)  [p,9(z)] = —ifig(2)

[a,al]=1 [N,a] = —a [N,al] =l

9 Uncertainty Relations and Inequalities

o | =t

1
0u0p = AvAp> 5 0qoq = AQAR> |(ilQ, RI)

UHAtscale time — AEWAtscale time Z

o | of

10 Probability Amplitudes and Probabilities

U(,t) = (z[¥(t))  Plde)=[W(z, ) dx  ci(t) = (¢:]¥(1))

P(i)

|ea(t)[*
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11 Spherical Harmonics

1 3\ 1/2 3\ /2 .
Yo0= T Yio= (E) cos(f) Yit1i=7F (87) sin(f)eti®

L = L0+ 1) B Yim  L:Vem = mtVem  |m| <€  m=——b+1,... 0—11¢

,_k
N
o
e
ot
>

0 : :
s p d f g h 7...

12 Hydrogenic Atom

¢n£m:RnZ(r)}/ﬁm(ga¢) Kgn_l £:0a1a2a~~~an_1

a me I e?
a, = —= | —— a= a=—
Z \ Mreduced MmecCQ he

_ 1 _ 1 1 _ :
Rig=2a,"%771%  Ryg= —za;"? (1 - EL) er/az) Ry = ma23/2Le—r/<2azJ
az 2 az

1/2
2 \* (n—t—-1)! 2
Ry = — —p/2 ;12041 _ AT
L {(naz) 2n[(n—|—£)!]3} € pLnte (p) p g
a
Ly(z) =€" (—) (e_xmq) Rodrigues’ formula for the Laguerre polynomials

j
) Ly(z) Associated Laguerre polynomials

h
Pl
—
8
-
Il
TN
QL
H|9~

(P ntm = “TZ [3n2 — ¢(¢ +1)]

Nodes = (n—1) — ¢ not counting zero or infinity
1 Z%m VAR Z2m
En — ——mec2a2— reduced — _ERyd_ reduced — _13.606°- reduced eV
2 n?  m, n? . n?  m,

13 General Angular Momentum Formulae

[Ji, J;] = iheijnJx (Einstein summation on k) [J2,J1=0

) .. 2,. ) .
J2|jm>:](]+1)ﬁ |gm) Jz|jm) = mTi|jm)
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Jy=Joxid,  Jilim) =0+ 1)

J{:}Z{

—m(m=£1)|jm=+1)

}(J+ +J) S Iy =JzJe=J = J.(J. +h)

SN

14 Spin 1/2 Formulae

[+4+) =11, )2, 4) |+—>=%(|1,+>|2,—>i|1:—>|21+>) == =11-)2-)

15 Time-Independent Approximation Methods

H=HO® 4+ xH®  |y)= E AE | ()

Opm=DY(1 = 6 0) + HO =STEMOR®y PN = S aump?)
£=0

m=0, m#n

(0) (0)
e 3 LR .

Ui )
0 0

all k, k#n ET(L)_EI(c)

Elt = <)+A<

W)
Egnd o )+A< 0 > ‘<¢£o)|H(1)|w£Lo)>‘2

0 0
all k, k;én ET(L)_EI(c)

ij:<¢k|H|¢j> Hc=EcC

16 Time-Dependent Perturbation Theory
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17 Identical Particles

1

|a, by = (I1,a;2,b) £ |1,b;2,a))

S

2

Y(F1,72) = —= (Ya(71) ¥ (72) £ ¥ (71)Ya(72))

1
ﬁ



Appendix 3 Multiple-Choice Problem Answer Tables

Note: For those who find scantrons frequently inaccurate and prefer to have their own table and
marking template, the following are provided. I got the template trick from Neil Huffacker at
University of Oklahoma. One just punches out the right answer places on an answer table and
overlays it on student answer tables and quickly identifies and marks the wrong answers

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e
1 0] @) 0] 0] 0O 6. 0O 0O 0] 0O 0O
2 0] 0O 0] 0] 0O 7. 0O 0O 0] 0O 0O
3 O @) @) @) 0O 8. @) @) @) 0O 0O
4 O @) @) @) 0O 9. @) @) @) 0O 0O
5 O @) @) @) 0O 10. @) @) @) 0O 0O
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Appendix 3 Multiple-Choice Problem Answer Tables

Answer Table for the Multiple-Choice Questions

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

10.



