15 Momentum space wavefunctions

15.1 free particles

in free space we saw that the time-independent Schroedinger equation is
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which has the solution 9 (z,0) = Ae** for a wave travelling from left to
right, or Ae~*® for a wave travelling from right to left, both with energy
Ey, = h*k?/2m. so we could in fact simplify this a bit with & = £v/2mE/h.

And then we have ¥(z,0) = Ae*® as a particular solution for any direction.

we get more physical insight into this by writing the momentum operator as
an eigenvalue equation - pf(x) = pf(x)

df (x)
dx
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log f = ipx/h + ¢ where ¢ is a constant so f = eP?/"te = Ber/h where
B = €° is a normalisation constant. so plane waves which are eigenfunctions
of the energy operator for free space (V' = 0) are also eigenfunctions of the
momentum operator - so these conserve momentum! which is what you would
hope as this is free space so we should conserve momentum as there are no
external forces (F' = dV/dz, so no forces means no potential i.e. V = 0 is
Schroedinger.)!
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= pf(z)

but this was just the time independent energy equation. we also know that
g’(ﬂj, t) = w(I*’ O)e—’iEkt/h — Aei(kx_Ekt/h)



this is a wave, of the form y(z,t) = Ae'**=“Y where w = E},/h. but we know
that for any function of x,t which depends on x,t in the special way x + vt
where v is a constant represents a wave of fixed profile travelling in the £+ x
direction at speed v, so this wave has velocity w/k = ik?/(2mk) = hk/2m

but the classical velocity of a particle from its momentum p = Mmvgassicar 1S
Uclassical = :tp/m = :i:hk:/m

so the quantum wave travels at half the velocity of the particle it is meant
to represent.... not really a good start! and remember that we couldn’t
normalise this either! because to have a well well defined (deterministic)
momentum, hk, we can only get there by having a completely indeterminant
position - a sinusoid can be anywhere in space.

So there is some sense in which this is NOT a physically realiseable state. to
normalise it we needed to localise it by confining it to some lab space —a <
x < a but this is equivalent to adding in different momentum components!

but if we cannot have a completely definite momentum, there is some sense
in which de Broglies formula simply does not work. there is no such thing as
a particle with determinate momentum. But there could be a particle with
a very small range of momenta - we could make a normalisable wavepacket
with a range of momenta. And then if its a sum of a load of waves it has a
group velocity as well as a phase velocity - the phase velocity is the velocity
of individual ripples, but the group velocity is the motion of the wavepacket
as a whole. so lets try it and see if we can make this work!

so what we want to do is know how to add together multiple plane waves
in order to get a wavepacket of a distinct shape in space. we do this using
Fourier transforms!



15.2 fourier transforms

we're going to be doing fourier transforms, so first a bit of revision you are
most used to seeing them in the time-frequency domain
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where w = 27 f. but we can just as easily do them in the position-wavenumber
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where k = 2w/ = p/h. So for any wavefunction in standard (configuration)

space, we can write an equivalent momentum space wavefunction.
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lets just see an example with a §(x) as we are about to need it!
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but the more useful bit comes when we add in the time dependence. In

general we have
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hence

§(z) = e*rdk
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useful integral
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15.3 Gaussian wavepackets

and we are going to try for a gaussian travelling wave 1(z,0) = Aeo=’ gilw _
gaussians are good as the FT of a gaussian is a gaussian. and we know that

the travelling wavepacket has group velocty [/m.

first normalise
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now do a fourier transform
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so now we know that the gaussian can be broken down into the infinite sum
of different £k values with
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i.e. an infinite sum of the plane wave solutions of the t = 0 eigenfunctions.
each of these has a different time dependence e *F#/" = e~ ihk?t/2m o
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after some tedious algebra we get
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let = 2ha/m and w = y/a/(1 + 6%t?) to get
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a gaussian has e~ (#7%0)*/20% g6 its a gaussian with peak position 2y = 0lt/2a =

2halt/(2ma) = hl/m which is what you expect for the classical particle!! so
the peak of the wavepacket has a group velocity which is what we want.

the wavepacket also spreads - its width is given by 1/(20?) = 2w? so

2 11+ (2hat /m)*
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as time progresses, the position gaussian broadens with time. this is EX-
ACTLY what you expect - the wavefunction is made up of many different k
values, ie different momenta. so the lower & move slower than the higher %
and so it broadens with time.



The uncertainty in momentum is back with the |¢(k)|? o< e=*=1*/20 this has
0 = a so o = a'/2. Then o, = hoy so hence AxAp = ha'/?/(2a'/?) = h/2.
so this one stays constant (as momentum is conserved!). so this product just
gets bigger....

This is the heisenburg uncertainty principle, but now you can really see where
it comes from. if we try to localise the particle, we can do it better and better
by adding in more and more different k& values. So the narrower we are in
position, the broader we are in momentum. but the centroid stays in the
same place - the mean momentum is zero. AxAp > h/2

15.4 Uncertainty principle AEAt < h/2

ask how long it takes a moving wavepacket to pass a particular point. then
At = Ax/v = mAz/p but E = p*/2m so AE = 2pAp/2m = Ap/m Hence
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AtAE = = AxAp > h/2

so this is clear that there is a corresponding energy-time uncertainty relation.
but this should make you feel uncomfortable. position and momentum are
both dynamical varibales, measuravble characteristics of the system. As is
energy. But time is emphatically not. The At is NOT the intrinsic dispersion
we have if we make a whole load of measurements of time, its the time it
takes the system to change substatially. time is not an operator belonging
to the particle, it is a parameter describing the evolution of the system. As
Lev Landau once joked ”To violate the time-energy uncertainty relation all I
have to do is measure the energy very precisely and then look at my watch!”

Nevertheless, there is something in it! A state that only exists for a short time
cannot have a definite energy. To have a definite energy, the frequency of the
state must accurately be defined, and this requires the state to hang around
for many cycles, the reciprocal of the required accuracy. eg linewidths - a
long lived transition has narrow energy width, a short one has broad energy
width.



what we are really doing is saying At = A < B > /(dB/dt) where B is
some dynamical operator and dB/dt is the rate of change of that dynamical
quantity.

NOT that the conservation of energy is violated - borrow” energy from the
Universe as long as it is "returned” within a short amount of time!!! ” there
are many legitimate readings of the energy time uncertainty principle, but
this isn’t one of them! Nowehere dows QM licence violation of energy con-
servation and certainly no such authorzation entered the derivation. But
the uncertainty principle is extrordinarily robust. it can be misused without
leading to seriously incorrect results, and as a consequence, physicits are in
the habit of applying it rather carelessly! (Griffiths!)



