
11.2 first order correction to the wavefunction

This can be calculated from ψ1
n =

∑

n 6=l cnlψ
0
l where

cnl = −< ψ0
l |H ′ψ0

n >

(E0
l − E0

n)
=
< ψ0

l |H ′ψ0
n >

(E0
n −E0

l )

so ψn(x) ≈ ψ0
n + ψ1

n

while perturbation theory often yields surprisingly accurate first order cor-
rections to the energies, E1

n, the first order wavefunction corrections, ψ1
n, are

notoriously poor

11.3 second order correction to energy

The second order correction done straightforwardly from our estimate for ψ1
n

E2

n =< ψ0

n|H ′ψ1

n >

or we can expand this out into the full sum

E2

n =< ψ0

n|H ′
∑

m6=n

cnmψ
0

m >=
∑

m6=n

cnm < ψ0

n|H ′ψ0

m >

=
∑

m6=n

< ψ0
m|H ′ψ0

n >

E0
n − E0

m

< ψ0

n|H ′ψ0

m >

But H ′ is also hermitian (gives us a energy which is always real!) so

< ψ0

n|H ′ψ0

m >=< H ′ψ0

n|ψ0

m >=< ψ0

m|H ′ψ0

n >
∗
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so then we have

< ψ0

m|H ′ψ0

n >< ψ0

n|H ′ψ0

m >=< ψ0

m|H ′ψ0

n >< ψ0

m|H ′ψ0

n >
∗= | < ψ0

m|H ′ψ0

n > |2

and finally

E2

n =
∑

m6=n

| < ψ0
m|H ′ψ0

n > |2
E0

n − E0
m

so En ≈ E0
n + E1

n + E2
n + . . .

12 Degenerate perturbation theory

all that depended on En − Em 6= 0. but we had a lot of degenerate levels in
hydrogen! so we really need to know how to treat degenerate levels.

12.1 two fold degeneracy

suppose we have a level where there are exactly 2 states ψ0
a and ψ0

b which
give the same energy E0, so any linear combination ψ0 = αψ0

a + βψ0
b also

gives the same energy E0 e.g. in hydrogen for l = 0, m = 0, ms = ±1/2.

typically the perturbation H ′ breaks the degeneracy, so that E0 splits into
two, with the difference in energy increasing as λ goes from 0 → 1. when we
turn off the pertubation, the upper states goes back to a unique α, β while
the lower states goes back to another unique α, β. we want to find these
’good’ unperturbed states!!

we have the same first order correction expression

H0ψ1 +H ′ψ0 = E0ψ1 + E1ψ0
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but now we multiply by ONE of our states ψ0∗
a and integrate

< ψ0

a|H0ψ1 > + < ψ0

a|H ′ψ0 >=< ψ0

a|E0ψ1 > + < ψ0

a|E1ψ0 >

< (H0ψ0

a|ψ1 > + < ψ0

a|H ′ψ0 >=< ψ0

a|E0ψ1 >< ψ0∗
a |E1ψ0 >

E0 < ψ0

a|ψ1 > + < ψ0

a|H ′ψ0 >= E0 < ψ0

a|ψ1 > +E1 < ψ0

a|ψ0 >

< ψ0∗
a |H ′ψ0 >= E1 < ψ0

a|ψ0 >

< ψ0

a|H ′(αψ0

a + βψ0

b ) >= E1 < ψ0

a|(αψ0

a + βψ0

b ) >

α < ψ0

a|H ′ψ0

a > +β < ψ0

a|H ′ψ0

b >= E1α < ψ0

a|ψ0

a > +E1β < ψ0

a|ψ0

b >

α < ψ0

a|H ′ψ0

a > +β < ψ0

a|H ′ψ0

b >= E1α

we can write this more compactly as

αWaa + βWab = αE1 where Wij =< ψ0

i |H ′ψ0

j >=
∫

ψ0∗
i H

′ψ0

j dx

and i, j is one of a, b. We could have multiplied by ψ0∗
b instead in which case

we would get

αWba + βWbb = βE1

this is a matrix equation where

(

Waa Wab

Wba Wbb

)(

α
β

)

= E1

(

α
β

)
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we can solve this by subtracting

(

Waa − E1 Wab

Wba Wbb − E1

)(

α
β

)

=

(

0
0

)

so the only non-trivial solutions are where the determinant of the 2x2 matrix
is zero so it can’t be inverted! so

(Waa − E1)(Wbb − E1)−WabWba = 0

but Wab +W ∗
ba so

WaaWbb − (Waa +Wbb)E
1 + (E1)2 − |Wab|2 = 0

this is just a quadratic and so it has 2 solutions

E1

± =
1

2
[Waa +Wbb ±

√

(Waa +Wbb)2 − 4(WaaWbb − |Wab|2) = 0

E1

± =
1

2
[Waa +Wbb ±

√

(Waa −Wbb)2 + 4|Wab|2) = 0

12.1.1 example

Two states, ψa and ψb are degenerate, both having energy E0, so any linear
combination ψ = αψa + βψb also has energy E0. A small perturbation, H ′,
causes a small change in energy, and the first order approximation for this,
E1, is given by the solution of a matrix equation.

suppose the H ′ is such that < ψ0
a|H ′ψ0

b >=< ψ0
b |H ′ψ0

a >= κ (i.e. κ is real)
while < ψ0

a|H ′ψ0
a >=< ψ0

b |H ′ψ0
b >= 1

the matrix equation for E1 such that

(

1 κ
κ 1

)(

α
β

)

= E1

(

α
β

)

4



(

1 κ
κ 1

)(

α
β

)

= E1

(

α
β

)

(

1− E1 κ
κ 1− E1

)(

α
β

)

= 0

only non-trivial solution when the determinant is zero. (1 − E1)2 − κ2 = 0
so 1−E1

± = ±κ or E1
± = 1± κ.

so we can draw a graph of the energies splitting as we turn up the pertur-
bation λH ′ by turning up λ from 0 to 1 - energies go from both being E0 to
splitting into E0 + E1

+ and E0 + E1
−

what are the corresponding wavefunctions which ’follow’ the perturbation?
we can solve separately for E1

± by substituting into our matrix, so E1
+ = 1+κ

gives

(

1− (1 + κ) κ
κ 1− (1 + κ)

)(

α
β

)

= 0

(

−κ κ
κ −κ

)(

α
β

)

= 0

so −κα + κβ = 0 so α = β. and we need the standard normalisation
conditions of α2 + β2 = 1 so ψ+ = 1/

√
2(ψ0

a + ψ0
b ).

similarly for E1
− = 1− κ we get

(

κ κ
κ κ

)(

α
β

)

= 0

i.e. κα + κβ = 0 or α = −β so ψ− = 1/
√
2(ψ0

a − ψ0
b ).
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these wavefunctions are special combinations of our original wavefunctions in
that they are wavefunctions that follow the perturbation. If we had chosen
these to start with then the matrix elements would have been

W++ =< ψ0

+|H ′ψ0

+ >= 1/2 < ψ0

a + ψ0

b |H ′(ψ0

a + ψ0

b >

= 1/2(< ψ0

a|H ′ψ0

a > + < ψ0

a|H ′ψ0

b > + < ψ0

b |H ′ψ0

a > + < ψ0

b |H ′ψ0

b >)

= 1/2(1 + κ + κ+ 1) = 1 + κ

W+− = W ∗
−+ =< ψ0

+|H ′ψ0

− >= 1/2(< ψ0

a + ψ0

b |H ′(ψ0

a − ψ0

b >

= 1/2(< ψ0

a|H ′ψ0

a > − < ψ0

a|H ′ψ0

b > + < ψ0

b |H ′ψ0

a > − < ψ0

b |H ′ψ0

b >) = 1/2(1−κ+κ−1) = 0

W−− =< ψ0

−|H ′ψ0

− >= 1/2(< ψ0

a − ψ0

b |eH ′(ψ0

a − ψ0

b >

= 1/2(< ψ0

a|H ′ψ0

a > − < ψ0

a|H ′ψ0

b > − < ψ0

b |H ′ψ0

a > + < ψ0

b |H ′ψ0

b >)

= 1/2(1− κ− κ+ 1) = 1− κ
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