
13.5 Relativistic corrections to momentum

In special relativity, the kinetic energy is given by
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so the lowest order relativistic correction isH1

rp = −p4/(8m3c2) = −(T 0)2/(2mc2) =
−(H0 − V (r))2/(2mc2)

Each level is 2n2 degenerate. But this perturbation commutes (more or
less) with H0 - the perturbation does not act on the spin, and its spher-
ically symmetric so it commutes L2 and Lz . Hence the degenerate states
belonging to E0

n are not connected to first order to H1

r . so actually we can
use non-degenerate perturbation theory (in effect, we have choosen ’good’
eigenvectors and eigenvalues by using n, l,m and ms. so then we have
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this is just a little bit sleazy, as p4 is not actually Hermitian for l = 0 even
though p2 is!! but it does actually (fortuitously) give the right answer
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we can get < V >= −e2/(4πǫ0) < 1/r > and then use the virial theorem to
get < 1/r >= 1/an2.

similarly (but more difficult, its not the virial theorem any more!)
< V 2 >= [−e2/(4πǫ0)]

2 < 1/r2 >, and

<
1

r2
>=

1

a2n3(l + 1/2)

and then we also have

a =
4πǫ0h̄

2

me2
so

e2

4πǫ0
=

h̄2

am

put it all together and get
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but we can write
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so put that in the equation and get
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13.6 total correction

add the terms (carefully) all together and we get
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where α = e2/(4πǫ0h̄c) = 1/137 is the dimensionless fine structure constant.
So then E0

n is of order α2, and E1

nj is of order α
4. Lets see this explicitally
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so we can see instantly that these corrections are of order α2 ∼ 104× smaller
than the unperturbed energy.
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13.6.1 Ground state of Hydrogen

The ground state of hydrogen has l = 0, j = |l − s| and j = l + s so there is
only one j = 1/2. Hence there is a correction to the ground state energy of
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α2/4 = 1.33 × 10−5E0

1
= −1.81 × 10−4 eV . So the ground

state energy is SLIGHTLY lower, at −13.6− 1.81× 10−4 eV

13.7 Quantum number sets

Our unperturbed energy levels were labelled with n, l,m,ms i.e. the quantum
numbers corresponding to operators H0, L2, Lz, Sz (there is S2 as well but
this has quantum numbers s(s+1)h̄2 = 3/4h̄2 for all electrons so its not very
useful!!

our new quantum number sets label the wavefunctions which follow all these
fine structure perturbations. and these are n, l, j,mj corresponding to H0,
L2, J2, Jz (again, we have S2 as well but its not very useful!)

J = L+S ie its a sum of orbital and spin angular momentum of the electron.
as such, its another angular momentum so by definition J2 has eigenvalues
j(j + 1)h̄2 and Jz has eigenvalues mjh̄.

from the initial vector sum definition, J = L + S then j should take values
from |l − 1/2| to l + 1/2 in integer steps, so j can take 2 values in general,
l− 1/2 and l+ 1/2 except for l = 0 where j = 1/2. so then mj can take any
value from −j...j in integer steps.
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13.8 Balmer line energies

the Balmer line transition is n = 3 to n = 2. In the analytic solution of the
Schroedinger equation we had En = −13.6/n2 eV so the line has energy

E3 −E2 = −13.6
( 1

32
−

1

22

)

= 1.889 eV

but now we have an energh which depends on j as well as n. so the n = 3
level splits. and we can either just keep track my using n, l, j,mj (safe) or
write it like the chemists and get confused! they label levels with n, and a
LETTER for l such that l = 0, 1, 2, 3.. is s,p,d,f (smart physicists don’t fail)
and then the value of j as a subscript.

n=3, l=0 means j = |l − 1/2| to j = l + 1/2 so j=1/2 (3s1/2)

n=3, l=1 means j = 1/2 and 3/2 (3p1/2 and 3p3/2)

n=3, l=2 means j = 3/2 and 5/2 (3d1/2 and 3d5/2)

then it drops to n=2 where we can have

n=2, l=0 means j = |l − 1/2| to j = l + 1/2 so j=1/2 (2s1/2)

n=2, l=1 means j = 1/2 and 3/2 (2p1/2 and 2p3/2)

so there are 5 different labels for the initial n = 3 state but only 3 with
distinct n, j values i.e. distinct energies. we started off with the level as
2n2 = 18 degenerate - now we have split the 18 possible degenerate states
into 3 different energies. but the level is still highly degenerate!

And there are 3 different lables for the final n = 2 state but only 2 distinct
n, j i.e. only 2 distinct energies. and since this level has degeneracy 8 before
we considered the perturbations it is still highly degenerate too!

so there are 6 possible different transition energies

n=3, j=1/2 (l=0 and 1) 3s1/2 and 3p1/2 going to n=2 j=1/2 (l=0 and 1) 2s1/2
or 2p1/2
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n=3, j=1/2 (l=0 and 1) 3s1/2 and 3p1/2 going to n=2 j=3/2 (l=1) 2p3/2

n=3, j=3/2 (l=1 and 2) 3p3/2 and 3d3/2 going to n=2, j=1/2 (l=0 and 1)
2s1/2 or 2p1/2

n=3, j=3/2 (l=1 and 2) 3p3/2 and 3d3/2 going to n=2 j=3/2 (l=1) 2p3/2

n=3, j=5/2 (l=2) 3d5/2 going to n=2, j=1/2 (l=0 and 1) 2s1/2 or 2p1/2

n=3, j=5/2 (l=2) 3d5/2 going to n=2 j=3/2 (l=1) 2p3/2

so there are 6 separate energy levels now which correspond to a transition
between n=3 and n=2. so why do we see only two strong lines?

we know that the photon carries angular momentum of unity so to conserve
angular momentum we need to change ∆l = ±1 for a radiative transition (ie
we see a line!). and this corresponds to ∆j = 0,±1 for allowed transitions
(electric dipole radiation!) - others are called forbidden - they do happen but
with much much smaller probability

so these selection rules (conservation of angular momentum!) remove some
of the possiblilites above, leaving only

3s1/2- 2p1/2 and 3p1/2 - 2s1/2

3s1/2 - 2p3/2

3p3/2 - 2s1/2 and 3d3/2 - 2p1/2

3d3/2 - 2p3/2

3d5/2 - 2p3/2

i.e. there are 7 possible labels, but only 5 possible energies i.e distinct com-
binations of n, j. These are

3,1/2 to 2,1/2

3,1/2 to 2,3/2
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3,3/2 to 2,1/2

3,3/2 to 2,3/2

3,5/2 to 2,3/2

but why then do we have 2 lines?? well, we don;t really - there are 5 lines,
but the energy spilt gets smaller and smaller with n so they form 2 sets of
lines, n=3 to 2,1/2 (2 lines)and n=3 to 2,3/2 (3 lines) which is why we see
this as a doublet.
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