7.3 Radial for 3D central potential

Our Schroedinger equation now looks like
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but we know L?Y = (I + 1)A*Y so
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This is an equation only for Rpgy, - but is not dependent on m, so we’ll
shorten it to Rg;. and partial derivatives are then standard derivatives. then
the radial part of the Schroedinger reduces
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let Ug; = rRp. then dU/dr = rdR/dr + R so
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so all we do now is multiply through by —h*/(2m) and rearrange and we
have something called the radial equation which is identical in form to the 1D
schroedinger equation except that potential V'(r) is replaced by the effective
potential V (r) 4+ R%1(1 + 1)/(2mr?) = V() + L?/(2mr?).
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We can see directly from this equation that L?/(2mr?) has exactly the same
role in the equation as V(r). This is not just a coincidence. Consider an
electron in a circular orbit. There is a centripetal force associated with the

rotation of ' = mov?/r. But the angular momentum L = mor so v? =

L?/(m*r?) and so F = m/r x L*/(m?r?) = L*/(mr®). A (conservative) force
is related to potential via dU/dr = —F so integrating means that angular
momentum forms an effective potential V,;; = L?/(2mr?)

8 The hydrogen atom

so now we can actually use this for real on the hydrogen atom. Here we have
2 particles rather than one, and we know that the proton is not infinitely
larger in mass than the electron, so we should really replace mass of a single
particle with the reduced mass of the total system u = M,m./(M, + m.)
rather than m, but otherwise, everything is the same

we know our radial schroedinger equation for a central potential is
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Where UEl = TREZ and wElm(T, 9, ¢) = REZ(T)Y}m(e, ¢)
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so all we have to do is put in our proper central potential V (r) = —Ze?/(4nre)
(where we leave the Z in so we can easily solve for any hydrogenic ion) and
solve for Rp;.
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multiply through by —h?/2u, and rearrange
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for bound states, E < 0 so let k? = —2uE /h® so that k is real.
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divide by k?
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so let p = kr so dp/dr = k and d*U/dr* = (dp/dr)*d*U/dp* = k*d*U/dp*.
then
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this will look better if we set py = puZe?/(2nh’ek) so
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This is nasty but well known mathematically (again!). this time the solu-
tion is related to the Laguerre polynomials L,(z) and asscociated Laguerre
polynomials L}_,(x) where
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the highest power of each Lj_, is 2? when ¢ = 0, or 2P~ for ¢ = 1. For L}
the polynomial is a constant and cannot be differentiatited further. so the
associated Laguerre polynomials can only be defined for ¢ — p > 0.

using these, the solution to our scaled Schroedinger equation is
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with the condition that py = 2n with n = 1,2, 3.... but this condition means
that k is quantised and hence E is quantised too
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This only depends on n, not on [ and we can see from the Laguerre polyno-
mials that n — [ — 1 > 0 so ! < n — 1. These are only features of our 1/r
potential - other central potentials don’t do this though ALL have energies
not dependent on m.

Thus for a given n there are n values of [ which have the same energy,
so the level is n degenerate. and remember that for each [ there are also
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20 + 1 degenerate values of m, so in fact each level is n? degenerate (or 2n?
degenerate when we get around to counting spin)

and it also means that p also depends on n as p = kr.
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define a = (4meph?)/(pZe?) = 5.29 x 10~ m~! for hydrogen so p = r/(an).
so a better way to write our radial function is
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since Ug; = rRg; then we can normalise
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so this gets us to
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The full wavefunction is ¥,;,, = R.uY:m and the radial probability density is
Dydr = [T [;_o R2,Yy5Yimr?sinfdfdgdr so D(r) = R%r?. This gives us a
way to visualise these in the 1 radial dimension.



