
11 Formalism

all operators A,B which commute share a common set of eigenfunctions. we
proved this in lecture 8

let Afn = anfn. and Bfn = bnfn then [A,B]fn = A(Bfn) − B(Afn) =
A(bnfn) − B(anfn) = anbnfn − bnanfn = 0 as numbers DO commute. So
operators which share common eigenfunctions commute.

This tells us a bit more about the uncertainty principle - if operators commute
then they share a common set of eigenfunctions, so measuring one does not
disturb the wavefunction for the measurement of the next. If they don;t
commute then in measuring we change the wavefunction so we can’t then
ask what the next observable is on the original wavefunction.

11.1 probability distributions

We interpret |ψ|2 as probability, so we form a probability distribution.

In 1D, the probability of finding the particle within dx of x is |ψ(x)|2dx =
D(x)dx where D(x) is the probability distribution in x. Then probability we
find it within a < x < b is

∫ b
a D(x)dx. This is unity if we integrate −∞ → ∞

in 3D, spherical polars the probability of finding the particle within volume
dV of position (rθφ) is |ψ(r, θ, φ)|2dV = |ψ(r, θ, φ)|2r2 sin θdrdθdφ

and then we INTEGRATE to get the distribution function in whatever vari-
able of interest. so radial probability - within dr of r is

∫
θ

∫
φ |ψ(r, θ, φ)|

2dV =∫
θ

∫
φ |ψ(r, θ, φ)|

2r2 sin θdrdθdφ = D(r)dr

If we have a wavefunction which is split into radial wavefunction and spherical
harmonics (so ψ(r, θ, φ) = R(r)Y (θ, φ) then we can go a step further eg for ra-
dial probability - within dr of r is

∫
θ

∫
φ |ψ(r, θ, φ)|

2dV =
∫
θ

∫
φ |R(r)|

2|Y (θ, φ)|2r2 sin θdrdθdφ =
|R(r)|2r2dr = D(r)dr

or for polar angle - probability to find electron within dθ of θ is
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∫
r

∫
φ |ψ(r, θ, φ)|

2dV =
∫
r

∫
φ |R(r)|

2|Y (θ, φ)|2r2 sin θdrdθdφ =
∫
φ |Y (θ, φ)|

2 sin θdθdφ

= 2π|Y (θ, φ)|2 sin θdθ = D(θ)dθ

11.2 Hermitian operators

we had
∫
ψ∗Qψdx =

∫
(Qψ)∗ψdx as our test for a hermitian operator, as this

gives < Q >=< Q >∗ i.e. a real value. But it turns out that this is equiv-
alent to what looks like a slightly stronger condition which is

∫
g∗Qfdx =∫

(Qg)∗fdx

11.3 Dirac Notation

All functions of x form a vector space. our requirement that the wave-
functions be square integrable means these span a more restricted vector
space called Hilbert space (by physicists) equivalent to the mathematicians
L2. mathematically, wavefunctions are abstract vectors and operators act on
them via linear transformations to produce new vectors. So its all actually
linear algebra.

Where we have 2 functions f, g each of which are square integrable then∫
f ∗gdx (called an inner product) is guaranteed to exist.

We can write this inner product in shorthand notation so
∫
f ∗gdx =< f |g >

called Dirac notation. i.e. that everything to the left is complex conjugate,
and the whole thing is an integral. so < f |g >=< g|f >∗=

∫
f ∗gdx. Its kind

of all a bracket so the < f bit is called a bra and the |g > bit is a ket....

we showed our energy eigenfunctions are orthonormal i.e.∫
ψ∗

mψndx =< ψm|ψm >= δmn

and any operator Q acting on a function returns another function which is
itself square integrable. so in dirac notation, our expectation values < Q >=∫
ψ∗Qψdx =< ψ|Qψ > (sometimes written as < ψ|Q|ψ > but I like the
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former as it makes it obvious that the operator acts on the wavefunction to
its right)

and just to show how nice the new notation is, lets look at < ψ|xpψ >=<
ψ|xf > where f = pψ then < xψ|pψ >=< pxψ|ψ > so we did in a few lines
that (px)∗ = (xp) which took us a long and tedious derivation in lecture 8.

12 Time independent perturbation theory

So we now have a property of the electrons which is spin. it can be spin
up or spin down, but it has an associated (small) magnetic moment so it
will have an associated (small) change in the energy. Working through the
effect of this analytically is HARD, especially as there are other small effects
which we have not included yet as well! but since the effects are small we can
instead APPROXIMATE the answers using perturbation theory! and this is
EASY(er). so lets go the easy way first and next year maybe you’ll get to do
it analytically!

Suppose we have a solution of the time independent Schroedinger equation for
some potential. We have the eigenfunctions ψ0

n corresponding to each energy
level n, so that H0ψ0

n = E0

nψ
0

n. Then these eigenfunctions are orthonormal
so

∫
ψ0∗

n ψ
0

mdx = δnm.

now perturb the potential slightly, by putting a bump in the well. We want
to find the new eigenfunctions and eigenvalues Hψn = Enψn. In general
we can’t solve this exactly for a more complicated potential so instead we
use perturbation theory to obtain an approximate solution to the perturbed
problem by building on the exact solutions of the unperturbed

So we write the new hamiltonian as the sum of two termsH = H0+λH ′ where
H ′ is the perturbation and the superscript 0 always deotes the unperturbed
case. We are really just using λ to keep track of first order, second order etc
terms. So then we can write ψn and En as a power series in λ

ψn = ψ0

n + λψ1

n + λ2ψ2

n + . . .
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En = E0

n + λE1

n + λ2E2

n + . . .

where E1

n is the first order correction to the nth energy and ψ1

n is the first
order correction to the nth eigenfunction. superscript 2 denotes the second
order corrections etc. then

Hψn = Enψn

(H0 + λH ′)(ψ0 + λψ1

n + λ2ψ2

n + . . .) = (E0

n + λE1

n + λ2E2

n + . . .)(ψ0 + λψ1

n + λ2ψ2

n + . . .)

collect powers of λ

H0ψ0 + λ(H0ψ1

n +H ′ψ0

n) + λ2(H0ψ2

n +H ′ψ1

n) + . . . =

E0

nψ
0

n + λ(E0

nψ
1

n + E1

nψ
0

n) + λ2(E0

nψ
2

n + E1

nψ
1

n + E2

nψ
0

n) + . . .

to zeroth order this is just H0ψ0

n = E0

nψ
0

n.

12.1 first order theory

But to first order this tells us something new!

H0ψ1

n +H ′ψ0

n = E0

nψ
1

n + E1

nψ
0

n

multiply by (ψ0

n)
∗ and integrate

< ψ0

n|H
0ψ1

n > + < ψ0

n|H
′ψ0

n >=< ψ0

n|E
0

nψ
1

n > + < ψ0

n|E
1

nψ
0

n >
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the nice thing here is that we haven’t had to specify our volume element over
the integral - its more general!

= E0

n < ψ0

n|ψ
1

n > +E1

n

H0 is hermitian so

< ψ0

n|H
0ψ1

n >=< H0ψ0

n|ψ
1

n >= E0

n < ψ0

n|ψ
1

n >

so this cancels and we are left with

E1

n =< ψ0

n|H
′ψ0

n >

Lets translate this back to normal notation. which is what we will ALWAYS
have to do to calculate anything! we have our first order terms

H0ψ1

n +H ′ψ0

n = E0

nψ
1

n + E1

nψ
0

n

multiply by (ψ0

n)
∗ and integrate

∫
(ψ0

n)
∗H0ψ1

ndx+
∫
(ψ0

n)
∗H ′ψ0

ndx =
∫
(ψ0

n)
∗E0

nψ
1

ndx+
∫
(ψ0

n)
∗E1

nψ
0

ndx

= E0

n

∫
(ψ0

n)
∗ψ1

ndx+ E1

n

H0 is hermitian so

∫
(ψ0

n)
∗H0ψ1

ndx =
∫
[H0ψ0

n]
∗ψ1

ndx = E0

n

∫
(ψ0

n)
∗ψ1

ndx

so this cancels and we are left with

E1

n =
∫
(ψ0

n)
∗H ′ψ0

ndx
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so the first order correction to the energy is the expectation value of the
perturbation using the unperturbed eigenfunctions!

12.1.1 example: 1D square well with delta function

You are used to the kronekar delta where δmn = 1 if n = m or 0 otherwise.
now I’m going to introduce you to the dirac delta which is the continuous
version of the integer match. so

∫
f(x)δ(x− x0)dx = f(x0)

it collapses any integral to the value of the function at the point marked by the
delta function. The delta function itself integrates to unity -

∫
δ(x−x0)dx = 1

so if we have H ′ = αδ(x− a/2) then

E1

n =
∫
ψ0∗

n H
′ψ0

ndx

=
2

a

∫ a

0

sin(nπx/a)αδ(x− a/2) sin(nπx/a)dx

=
2α

a
sin2 nπ/2

this is 0 if n is even, so there is no correction to even E1

n. but 2α/a for odd
n. For even n the wavefunction is zero at a/2 so the perturbation has no
effect. while for odd n it peaks here so the energies are shifted.
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