
12.5 3D square well example (cont)

so the non-trivial solution (i.e. α, β, γ 6= 0) is when the determinant of the
matrix is zero
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(1− w)[(1− w)2 − κ2] = 0

so the roots are 1 − w = 0 i.e. w = 1 and (1 − w)2 = κ2 i.e. 1 − w = ±κ
so 4E1/V0 = 1 and 4E1/V0 = 1 ∓ κ so E1 = V0/4, V0/4 − 16/(9π2) and
V0/4 + 16/(9π2).

sub each value of w back into the matrix - first w=1
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



0 0 0
0 0 κ
0 κ 0






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γ
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
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
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0
0







so κγ = 0 and κβ = 0 and the only one left is α so the eigenvector for w = 1
is just |1 >= ψ112

similarly for w = 1− κ we have







κ 0 0
0 κ κ
0 κ κ













α
β
γ





 = 0

so κα = 0 and κβ + κγ = 0 so γ = −β so
√

1/2(|2 > −|3 >) =
√

1/2(ψ121 −

ψ211)

and for w = 1 + κ is
√

1/2(ψ121 + ψ211)
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so if we had started with these in the first place we would have been OK
to use non-degenerate perturbation theory - you can check that with these
wavefunctions all off diagonal terms Wij = 0 for j 6= i

a >= 1 >, b >= 1√
2
(2 > −3 >), c >= 1√

2
(2 > −3 >)

Waa =W11 = V0/4

Wab =< a|H ′b >= 1√
2
(< 1|H ′2 > − < 1|H ′3 >) = 0

Wac =< a|H ′c >= 1√
2
(< 1|H ′2 > + < 1|H ′3 >) = 0

Wbb =< b|H ′b >= 1√
2
(< b|H ′2 > − < b|H ′3 >) = 1/2(< 2|H ′2 > − <

3|H ′2 > − < 2|H ′3 > + < 3|H ′3 >) = 1/2(2V0/4− 2κV0/4) = (1− κ)V0/4

Wbc =< b|H ′c >= 1√
2
(< b|H ′2 > + < b|H ′3 >) = 1/2(< 2|H ′2 > − <

3|H ′2 > + < 2|H ′3 > − < 3|H ′3 >) = 0

Wcc =< c|H ′c >= 1√
2
(< c|H ′2 > + < c|H ′3 >) = 1/2(< 2|H ′2 > + <

3|H ′2 > + < 2|H ′3 > + < 3|H ′3 >) = V0/4(1 + κ)

Hence the matrix is







V0/4− E1 0 0
0 (1− κ)V0/4−E1 0
0 0 (1 + κ)V0/4













a
b
c





 = 0

so we have E1 = V0/4, (1− κ)V0/4, (1 + κ)V0/4. Had we chosen a > b > and
c > at the start we could have used non-degenerate perturbation theory with
E1

a =< a|H ′a > etc

13 Application to Hydrogen

we saw that each level n in Hydrogen was n2 degenerate (without spin) or
2n2 degenerate once we count spin as well, bringing in an additional quantum
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number ms = ±1/2. So now lets do it!!!

13.1 Spin-orbit coupling

The perturbation to the potential from the magnetic dipole moment gener-
ated by electron spin, µs, is H

′ = −µ
s
.B where B is the external magnetic

field.

we already know µs = −gs
e

2me

S (see lecture 14). And gs, the spin factor of
an electron, is OBSERVED to be ∼ 2 (as can be calculated from relativistic
quantum theory). so µ

s
= − e

me

S.

now all we need is B. For orbitals which have angular momentum (i.e.
everything except l = 0), then in a classical picture, the electron is orbiting
the nucleus. but from the electrons point of view its the +ve nucleus which
orbits around it! This sets up a magnetic field from the current loop B =
µ0I/2r from the effective current I = e/P where P is the period of the orbit
P = 2πr/v. But orbital angular momentum is

L = rmv = rm2πr/P = 2πmr2/P =
2πmr2I

e
=

2πmr22rB

µ0e

this was just about magnitute, but B and L are both vectors, and they point
in the same direction as they are from the same effect! so

L =
2πmr22rB

µ0e
=

4πǫ0c
2mr3

e
B

as ǫ0µ0 = 1/c2. Turn this around and get

B ==
e

4πǫ0c2mr3
L
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hence

H ′ = −µ
s
.B =

e

m
S.

e

4πǫ0c2mr3
L =

e2

4πǫ0c2m2r3
S.L

However, this ignored the acceleration of the electron - putting this in ap-
proximately results in an answer which is approximately half. so there is an
additional (small) potential from spin-orbit coupling which gives a perturba-
tion

H ′
so =

e2

8πǫ0c2m2r3
S.L

so our hamiltonian has an extra term from S.L = SxLx + SyLy + SzLz . so
we know that if the perturbation commutes with H0 then we can use the
E1

i =< ψ0

i |H
′ψ0

i > even on degenerate levels!

so we might want to use ψnlmms
i.e. use the joint eigenfunctions of H0,

L2, Lz, S
2, Sz labeled by our standard quantum numbers n,m, l,ms where

ms = ±1/2 becasue s = 1/2 BUT these do not commute with the pertur-
bation S.L. S.L will contain terms with Lx and Ly which will not commute
with Lz and terms Sx, Sy which will not commute with Sz. ... so we’d have
to use full degenerate perturbation theory which is a *real* pain.

But if we make a total angular momentum J = L+S, then this total J does
commute with all our original operators AND with the perturbation!
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