12.5 3D square well example (cont)

so the non-trivial solution (i.e. «, 3, # 0) is when the determinant of the
matrix is zero

(1_w)’ l-w &

(1 - w1 —w)? -] =0

so the roots are 1 —w = 0ie. w=1and (1 —w)?=k%ie 1 —w=*+xK
so 4B, /Vy = 1 and 4E,/Vy = 1 F k so Ey = Vy/4, Vo/4 — 16/(97%) and
Vo/4 + 16/(972).

sub each value of w back into the matrix - first w=1

SHIONY

so ky = 0 and kf = 0 and the only one left is a so the eigenvector for w =1
is just |1 >= ’QZ)HQ

similarly for w =1 — xk we have

HHIOK

so ka =0and kB +Krky=0s0v7=—F50+/1/2(]2> —[3>) = /1/2(¢)121 —
Ya11)

and for w =1+ k is /1/2(¢121 + Va11)
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so if we had started with these in the first place we would have been OK
to use non-degenerate perturbation theory - you can check that with these
wavefunctions all off diagonal terms W;; = 0 for j # ¢

a>=1>b>=5(2>-3>),c>=75(2>-3>)
Waazwllz%/4

Wap =< a|H'b >= S=(< 1|H'2 > = <1|H'3>) =0

Sl

Wae =< a|lH'c >= (< 1H2 > + < 1|H'3>) =0

Wy =< b|H'b >= J5(< DJH'2 > — < B[H'3 >) = 1/2(< 2|H"2 > - <

3|H'2 > — < 2|H'3 > + < 3|H'3 >) = 1/2(2V,/4 — 26Vp/4) = (1 — k)Vp /4

Wie =< blH'c >= J5(< b|H'2 > + < D|H'3 >) = 1/2(< 2|H2 > — <
3|H2 >+ <2|H'3>—-<3|/H3>)=0

Wee =< c|H'c >= J5(< c|[H'2 > + < ([H'3 >) = 1/2(< 2|H"2 > + <
3|H2 >+ < 2|H'3 >+ < 3|H'3>) =V, /4(1 + k)

Hence the matrix is

Vo/d — E? 0 0 a
0 (1—K)Vp/4— E 0 b | =0
0 0 (1+r)Vo/d ) \ ¢

so we have E' = Vy/4, (1 — k)Vy/4, (1 + k)V, /4. Had we chosen a > b > and
c > at the start we could have used non-degenerate perturbation theory with
El =< a|H'a > etc

13 Application to Hydrogen

we saw that each level n in Hydrogen was n? degenerate (without spin) or
2n? degenerate once we count spin as well, bringing in an additional quantum
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number my; = £1/2. So now lets do it!!!

13.1 Spin-orbit coupling

The perturbation to the potential from the magnetic dipole moment gener-
ated by electron spin, ug, is H' = —p,-B where B is the external magnetic
field.

we already know p; = —gs5—S5 (see lecture 14). And gs, the spin factor of
an electron, is OBSERVED to be ~ 2 (as can be calculated from relativistic
quantum theory). so M, = -8

Me =

now all we need is B. For orbitals which have angular momentum (i.e.
everything except [ = 0), then in a classical picture, the electron is orbiting
the nucleus. but from the electrons point of view its the +ve nucleus which
orbits around it! This sets up a magnetic field from the current loop B =
ol /27 from the effective current I = e/ P where P is the period of the orbit
P = 27r/v. But orbital angular momentum is

2 27 2 22rB
L =rmv=rm2nr/P = 27Tmr2/P _ L S er
e JInG

this was just about magnitute, but B and L are both vectors, and they point
in the same direction as they are from the same effect! so

L— 2rmr22rB _ 47?6002mr3§
Ho€ €

as €fo = 1/c*. Turn this around and get

e
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hence
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However, this ignored the acceleration of the electron - putting this in ap-
proximately results in an answer which is approximately half. so there is an
additional (small) potential from spin-orbit coupling which gives a perturba-
tion

e2

H =———-SL

50 8mwegcim?2r3

so our hamiltonian has an extra term from S.L = S, L, + S,L, + S.L.. so
we know that if the perturbation commutes with H° then we can use the
E! =< ¢?|H'Y? > even on degenerate levels!

so we might want to use ¥numm. i.e. use the joint eigenfunctions of HY,
L? L., 5% S, labeled by our standard quantum numbers n, m, [, m, where
ms = +1/2 becasue s = 1/2 BUT these do not commute with the pertur-
bation S.L. S.L will contain terms with L, and L, which will not commute
with L, and terms S;, S, which will not commute with S,. ... so we’d have
to use full degenerate perturbation theory which is a *real* pain.

But if we make a total angular momentum J = L + S, then this total J does
commute with all our original operators AND with the perturbation!



