
7.3 Radial for 3D central potential

Our Schroedinger equation now looks like
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This is an equation only for RElm - but is not dependent on m, so we’ll
shorten it to REl. and partial derivatives are then standard derivatives. then
the radial part of the Schroedinger reduces
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so all we do now is multiply through by −h̄2/(2m) and rearrange and we
have something called the radial equation which is identical in form to the 1D
schroedinger equation except that potential V (r) is replaced by the effective
potential V (r) + h̄2l(l + 1)/(2mr2) = V (r) + L2/(2mr2).
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We can see directly from this equation that L2/(2mr2) has exactly the same
role in the equation as V (r). This is not just a coincidence. Consider an
electron in a circular orbit. There is a centripetal force associated with the
rotation of F = mv2/r. But the angular momentum L = mvr so v2 =
L2/(m2r2) and so F = m/r×L2/(m2r2) = L2/(mr3). A (conservative) force
is related to potential via dU/dr = −F so integrating means that angular
momentum forms an effective potential Veff = L2/(2mr2)

8 The hydrogen atom

so now we can actually use this for real on the hydrogen atom. Here we have
2 particles rather than one, and we know that the proton is not infinitely
larger in mass than the electron, so we should really replace mass of a single
particle with the reduced mass of the total system µ = Mzme/(Mz + me)
rather than me but otherwise, everything is the same

we know our radial schroedinger equation for a central potential is
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where UEl = rREl and ψElm(r, θ, φ) = REl(r)Ylm(θ, φ)

2



so all we have to do is put in our proper central potential V (r) = −Ze2/(4πrǫ0)
(where we leave the Z in so we can easily solve for any hydrogenic ion) and
solve for REl.
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for bound states, E < 0 so let k2 = −2µE/h̄2 so that k is real.
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so let ρ = kr so dρ/dr = k and d2U/dr2 = (dρ/dr)2d2U/dρ2 = k2d2U/dρ2.
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this will look better if we set ρ0 = µZe2/(2πh̄2ǫ0k) so
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This is nasty but well known mathematically (again!). this time the solu-
tion is related to the Laguerre polynomials Lq(x) and asscociated Laguerre
polynomials Lp
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Lq(x) = ex
( d

dx

q

(e−xxq)
)

Lp
q−p = (−1)p

( d

dx

)p
Lq(x)

the highest power of each Lp
q−p is xp when q = 0, or xp−1 for q = 1. For Lp

0

the polynomial is a constant and cannot be differentiatited further. so the
associated Laguerre polynomials can only be defined for q − p > 0.

using these, the solution to our scaled Schroedinger equation is
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with the condition that ρ0 = 2n with n = 1, 2, 3.... but this condition means
that k is quantised and hence E is quantised too
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This only depends on n, not on l and we can see from the Laguerre polyno-
mials that n − l − 1 ≥ 0 so l ≤ n − 1. These are only features of our 1/r
potential - other central potentials don’t do this though ALL have energies
not dependent on m.

Thus for a given n there are n values of l which have the same energy,
so the level is n degenerate. and remember that for each l there are also
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2l + 1 degenerate values of m, so in fact each level is n2 degenerate (or 2n2

degenerate when we get around to counting spin)

and it also means that ρ also depends on n as ρ = kr.
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define a = (4πǫ0h̄
2)/(µZe2) = 5.29 × 10−11 m−1 for hydrogen so ρ = r/(an).

so a better way to write our radial function is
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since UEl = rREl then we can normalise
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The full wavefunction is ψnlm = RnlYlm and the radial probability density is
Dnldr =
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2. This gives us a

way to visualise these in the 1 radial dimension.
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