
We want to solve the Schroedinger equation - the full, time dependent Schroedinger
equation - for the wavefunction Ψ(x, t). If the potential is constant in time
then the wavefunction is separable in space and time. we find the spatial bit
by solving the time independent Schroedinger equation - and in general there
are multiple solutions, Hψn = Enψn. Then a particular solution is Ψn(x, t) =
ψn(x)e−iEnt/h̄ and the general solution is Ψ(x, t) =

∑

n cnψn(x)e−iEnt/h̄.
A single particular solution (energy eigenfunction) is a stationary state - all
expectatino values are constant in time. A general solution which is made
of multiple particular solutions is NOT. we saw the probability distribution
|Ψ(x, t)|2 was time dependent! so all expectation values are as well!
e.g. for 2 terms in the infinite square well the probability density included a
term cosωt where ω = (E2 − E1)/h̄
Consider an electron in the ground state of an atom. This is a single eigen-
function, so < x > is not dependent on time as its a standing wave. since an
electron is charged, then this is saying that the charge distribution is constant
also, so there is no radiation. so QM provides a way to resolve the paradox
you get by thinking of electrons as particles which orbit around atoms. in
this picture the electron is accelerating (circular motion) so should radiate
and hence the orbit should decay. But in QM the probability is stationary
so the charge is not ’moving’ so it doesn’t radiate.
But atoms in their excited states do eventually make a transition down to
the ground state. So if we have an atom in state n = 2 then it has some
probability of being in state 1 as well - of decaying down. If its a mix of two
states then its probability density and hence charge distribution oscillate in
time with frequency h̄ω = E2−E1 which is precisely the frequency of photon
which is emitted to carry away the energy difference. This can’t happen for
the ground state as there is no lower state for this to mix with.
Schroedingerwrote ’It is hardly necessary to point out how much more grat-

ifying it would be to concieve of a quantum transition as an energy change

from one vibrational mode to another, than to regard it as a jumping of an

electron’

Wavefunctions which are mixtures of eigenstates give expectation values
which depend on time! pure eigenstates do not.
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3.7 How to find the cn for any function

Going from the particular solution to the general solution we are making the
assumption that the energy eigenfunctions span the entire space, that they
are good basis functions. then any arbitrary function can be expanded out
as a sum of these basis functions.
we have f(x) =

∑

n cnψn so multiply by ψ∗

m and integrate

∫

ψ∗

mf(x)dx =
∫

ψ∗

m

∑

n

cnψn =
∑

n

cn

∫

ψ∗

mψndx =
∑

n

cnδmn = cm

so for any functional form f(x) we can decompose it into a weighted sum of
energy eigenfunction cnψn, calculating each cn =

∫

ψ∗

nf(x)dx
e.g. ψ(x, t = 0) = A 0x < L/2 and 0 for L/2x < L in an infinite square

well potential 0 < x < L. normalise to get A =
√

2/L. Then we can

decompose it into the sum of energy eigenfunctions for this potential ψn(x) =
√

2/L sin nπx/L = N sinnπx/L

cn = AN
∫ L/2

0

sin nπx/Ldx = AN [−
cosnπx/L

(nπ/L)
]
L/2

0

= −
ANL

nπ
[cosnπ/2 − cos0] = −

2

nπ
(cos(nπ/2) − 1)

this is different for even and odd n. For odd n cos(nπ/2) = 0 while for even
cos(nπ/2) = ∓1 e.g. c1 = 2/π, c2 = −1/(2π)(cosπ − 1) = 1/π etc... (sorry,
got this wrong in the lecture)

4 Central 1 D potentials

4.1 infinite square well

Ψn(x, t) = ψn(x)e−iEnt/h̄ where the energy eigenfunctions ψn(x) =
√

2

L
sin(nπx/L)

corresponding to energy En = n2E1 and E1 = π2h̄2/(2mL2). This is for
V = 0 for 0 < x < L, and v = ∞ elsewhere.
BUT!! this is actually a bit inconvienient - we are wanting to do Hydrogen -
we will want potentials which are symmetric about 0 rather than L/2. so we
could simply change the variable to x′ = x − L/2 and we are in a centrally
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symmetric potential. Energy doesn’t change, this is just a shift in axis - so
instead of sines we get a bunch of sine and cosine functions depending on
whether n is even or odd....

ψn(x′) =

√

2

L
sin(nπ(x′ + L/2)/L)

=

√

2

L
sin(nπx′/L+nπ/2) =

√

2

L
(sin(nπx′/L) cos(nπ/2)+cos(nπx′/L) sin(nπ/2))

but this depends on n. n=1, then sin π/2 = 1 and cosπ/2 = 0

ψ1(x
′) =

√

2

L
cos(πx′/L)

similarly for n = 2 then sin π = 0 and cos(π) = −1 so

ψ2(x
′) = −

√

2

L
sin(2πx′/L)

ψ3(x
′) = −

√

2

L
cos(3πx′/L)

ψ4(x
′) =

√

2

L
sin(4πx′/L)

4.2 The finite well

now lets bring the infinite potential step down to a finite step. so now we
have three regions. The bit in the middle with −L/2 < x < L/2 is a solution
of the Schroedinger equation with V = 0 i.e.

−h̄2

2m

d2ψ

dx2
= Eψ

d2ψ

dx2
=

−2mE

h̄2
ψ = −k2ψ

where bound solutions have 0 < E < V0 so k2 = 2mE/h̄2 This has a general
solution ψ = A cos(kx) +B sin(kx)
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4.2.1 odd n, peaking at zero

We can see from symmetry that for odd n this will peak at zero i.e. to be
cosines only so ψ = A cos kx. When it does, then the bit to the left and right
are equal (for even n, the bit to the left and right are equal and opposite).
so lets do the bit to the right at x is +ve so its easier!

−h̄2

2m

∂ψ2

∂x2
=

2m

h̄2
(V0 − E)ψ = ρ2ψ

we are looking for bound solutions so V0 > E. this has a general solution
ψ = Ceρx +De−ρx boundary condition at x→ ∞ is C = 0 so ψ = De−ρx.
need to match wavefunction at x = L/2 where A cos kL/2 = De−ρL/2.
we also need to match derivatives at L/2 −Ak sin kL/2 = −ρDe−ρL/2

divide and get k tan ka = ρ.
let ka = z and then ρa = z tan z.

ρ2 = 2m(V0 − E)/h̄2 = 2mV0/h̄
2 − 2mE/h̄2 = 2mV0/h̄

2 − z2/a2

ρ2a2 = z2

0
− z2

where z2

0
= (2mV0/h̄

2a2) i.e. V0 = z2

0
h̄2a2/(2m). Then we get

√

z2
0 − z2 =

z tan z or
√

(z0/z)2 − 1 = tan z
This is a trancendental equation!! bad news. but we can solve it with if we
know z0 i.e. V0 e.g. suppose z0 = 4. Then type:
Solve Sqrt[(4/z)ˆ 2-1] = Tan[z]
into wolfram mathematica and get that this has two +ve solutions at z1 =
1.25.. and z2 = 3.59.. (the -ve one doesn’t correspond to a physical solution).
So there are two bound states. we can find the energies by substituting these
back into zn = k2a2 = 2mEna

2/h̄2 so En = h̄2z2

n/(ma
2)

and then we can also write down the full wavefunction as we can then nu-
merically solve for k and ρ and hence get the normalisation D = Aeρa cos ka
in terms of A.
and then of course we have to normalise the total wavefunction so that we
get the value for A for which

∫

Ψ∗Ψdx = 1. we have to do this in piece-
wise continuous fashion as our wavefunction is piecewise continuous. i.e.
∫

−a
−∞

ψ∗ψdx+
∫ a
−1
ψ∗ψdx+

∫

∞

a ψ∗ψdx = 1
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