
4.3 The linear harmonic oscillator

This has a potential V (x) = 1

2
kx2, and classically it oscillates with frequency

ω =
√

k/m so V (x) = 1

2
mω2x2 - this can be used to approximately describe

any arbitrary continuuos potential W (x) in the vicinity of a stable equilib-
rium position (minimum in V (x)) so its very important as its of very general
use.
The time independent Schroedinger equation is
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4.3.1 ladder operators

but this is easy to solve if we were dealing with numbers rather than operators
= we know that (a2 + b2) = (a + ib)(a − ib) BUT these are OPERATORS,
and worse, the operators involved are x and p....

a+ = N(p + imωx) = Ni(p/i+mωx) = Ni(−ip +mωx)

similarly

a− = M(p− imωx) = Mi(p/i−mωx) = Mi(−ip−mωx) = −iM(ip+mωx)

I’m going to choose iN = −iM = 1√
2h̄mω

as it makes everything look very
pretty later on
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so H = h̄ω(a+a− + 1/2)
similarly a−a+ = ( 1

h̄ω
H + 1

2
) so H = h̄ω(a−a+ − 1/2)

so the hamiltonian does not quite factor perfectly and we have
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suppose I could find a solution, ψn, with associated energy En. Then if I
operate on it by a+ I get a+ψn. This is also a solution!
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ψn = a+(H + h̄ω)ψn

= a+(Eψn + h̄ωψn) = a+(E + h̄ω)ψn = (E + h̄ω)a+ψn

so if ψn satisfies the Schroedinger equation with energy E then a+ψn satisfies
it with energy E + h̄ω
similarly, H(a−ψn) = (E − h̄ω)a−ψn

so a± are ladder operators. We have one solution, and we can find all the
rest by moving up and down the ladder in energies!
so all we need is ONE solution to get started. There must be a bottom rung,
with wavfunction ψb at which if we tried to go lower we can’t!! so a−ψb = 0.
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where c is a constant. so ψb = Ne−mωx2/2h̄ normalise this and we get

ψb(x) =
(mω

πh̄

)1/4

e−mωx2/2h̄

which is the wavefunction we used in the first couple of lectures with a =
mω/h̄
The energy associated with this is also easy to find from Hψ = h̄ω(a+a− +
1/2)ψ = Eψ. We know a−ψb = 0 so 1/2h̄ωψb = Ebψb so Eb = h̄ω/2. I’m
going to call this n = 0 state as all the rest are ψn = Ana+ψ0 and have
energies En = (n + 1/2)h̄ω.

4.3.2 brute force (and ignorance)

if we hadn’t been smart, we would just have looked to the mathematicans to
have solved this for us. and they have.
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change variables to ζ =
√

mω
h̄
x and then we have

d2ψ

dζ2
= (ζ2 −K)ψ

where K = 2E/h̄ω.
Its still not in any way easy to solve, but we can bludgeon it into submission!
In fact it turns out to be related to a set of special functions called Hermite
polynomials Hn(ζ) where n denotes the highest power of ζ present so H0 is
constant, H1 = ax+ b etc.. and this n is also the quantization condition on
K = 2n+ 1 so (2n+ 1)h̄ω/2 = En or En = (n+ 1/2)h̄ω (as before). Then

ψn(ζ) =
(mω

πh̄

) 1√
2nn!

Hn(ζ)e−ζ2/2

where

Hn(ζ) = (−1)neζ2 dne−ζ2

dζn

so
H0(ζ) = 1
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H1(ζ) = 2ζ

etc - and it is very tedious, and it only gets worse with higher orders. but
there is a simpler way to generate these terms as they also satisfy the recur-
sion relation which is a bit easier to work with

Hn+2(ζ) − 2ζHn+1(ζ) + 2(n + 1)Hn(ζ) = 0

so then we have
H2(ζ) = ... = 4ζ2 − 2

H3(ζ) = ... = 8ζ3 − 12ζ

H4(ζ) = ... = 16ζ4 − 48ζ3 + 12

so now all we do is turn it back from ζ to x

4.4 Properties of harmonic potential

So now lets look at these wavefunctions as a series - infinite well centered at
0, finite well centered on 0 and harmonic potential - and we see how they
are showing the same sort of thing each time. Trap an electron and energy
levels are quantised.
1) En = (n + 1/2)h̄ω and n runs from 0 rather than 1. The lowest energy
state is E0 = h̄ω/2 - the system has a zero point energy which is NOT zero
due to the Heisenburg uncertainty principle ∆x∆p ≥ h̄/2. The system can-
not sit motionless at the bottom of its potential well, for then its position and
momentum would both be completely determined to arbitrarily great pre-
cision. Therefore, the lowest-energy state (the ground state) of the system
must have a distribution in position and momentum that satisfies the uncer-
tainty principle, which implies its energy must be greater than the minimum
of the potential well (zero)
2) Even n gives symmetric wavefunctions (like odd n in the square well)
3) Odd n gives antisymmetric wavefunctions (like even n in the square well)
they are quite similar in shape to the finite square well potential wavefunc-
tions, but the nice thing here is that the potential doesn’t have those unphys-
ical discontinuities. and here we have the turning points from polynomials
rather than sin/cos functions which is a general property of a potential which
depends on x as a power law rather than being a constant.
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