
13.2 Adding angular momenta

We saw that electrons have a quantum magnetic moment, kind of like you’d
expect if it had spin. And that this magnetic moment interacts with the
magnetic field caused by the proton if the electron has angular momentum,
giving an additional contribution to the potential of H ′

so ∝ S.L = SXLX +
SyLY + SZLZ . So this DOES NOT COMMUTE with Sz and Lz since we
can only know one of the components of any angular momentum at once. So
the perturbation doesn’t commute with the original operators Lz, Sz so the
original wavefunctions are not the ’good’ wavefunctions, so we have to do
the full matrix of degenerate perturbation theory.....

OR DO WE?? Turns out that if we make a total angular momentum J =
L + S, then this total J2, Jz does commute with all our original operators
AND with the perturbation! (you’ll prove this in next weeks homework!
[Jz, S.L] = 0). Here we’ll prove that [J2, L.S] = 0)

J2 = (L+ S).(L+ S) = L2 + S2 + 2L.S

as S.L = L.S since S and L commute. so

[J2, L.S] = [L2 + S2 + 2L.S, L.S]

= [L2, LxSx + LySy + LzSz] + [S2, LxSx + LySy + LzSz] + [2L.SL.S]

= Sx[L
2, Lx] + Sy[L

2, Ly] + Sz[L
2, Lz] + Lx[S

2, Sx] + Ly[S
2, Sy] + Lz[S

2, Sz] + 0

= 0

as all components of ann angular momentum commute with total square of
that angular momentum!
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in essence, total angular momentum is conserved, while the component parts
of it are not, so instead of going with the component parts, where we have
Lz, Sz we replace the problematic Sz, Lz with J2, Jz so we now think about
the set H0, L2, J2, S2, Jz.

Adding angular momentum is subtle. But if we go back to the vector model
we have at least a place to start. Jz = LZ + Sz so this is easy to calculate.
Lz has values mlh̄ where ml = −l,−l + 1..0..l − 1, l and l is the quantum
number from the eigenvalues of L2 which are l(l + 1)h̄2.

Sz likewise has valuesmsh̄ wherems = −s..s, where s is the quantum number
from the eigenvalues of S2 which are s(s + 1)h̄2. But here s = 1/2 for ALL
electrons (in fact all fermnios). So ms = −1/2 or +1/2.

so the maximum value of Jz is the sum of the maximum values of ml and sl
i.e. max Jz = l+ s. similarly, min Jz = −l− s. In other words, Jz runs from
−l− s....l+ s in integer steps, so it must correspond to an value j = l+ s of
J2 which has eigenvalues j(j + 1)h̄2. We can see this by thinking about the
vector model of angular momentum - draw L as a vector in the Lx, Ly, Lz

space. It has length
√

l(l + 1)h̄, and projection mlh̄ onto the Lz axis. but
it can be oriented anywhere around Lx, Ly forming a cone of possible values
for each ml, so the full sequence can have a cone with ml = −l, another with
ml = −1+1, and so on up to ml = l. so there are 2l+1 possible cones, each
with their own ml value, for each l.

Similarly, we can draw S in the Sx, Sy, Sz space as a vector of length
√

s(s+ 1)h̄.
now there are cones with Sz = −s up to s. So the maximum possible value
for J is if we take the maximum ml and ms and have them aligned as close
as possible. this gives a vector J of length ≈ (l + s)h̄. But the minimum J
is when we have the maximum ml and the MINIMUM ms and have them
MISALIGNED as far as possible. This gives a vector J of length ≈ |l− s|h̄.

So this tells us that when we add orbital and spin angular momenta, to make
J = L+ S then j can take values |l− s| < j < l + s in integer steps, and for
each one then mj takes values −j...j in integer steps.

In our specific case, s = 1/2 then there is only one integer between |l − s| <
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ml ms mj = ml +ms

1 1/2 3/2
1 -1/2 1/2
0 1/2 1/2
0 -1/2 -1/2
-1 1/2 -1/2
-1 -1/2 -3/2

Table 1: Possible values of mj resulting from l = 1 and s = 1/2

j < l + s so j takes values |l − 1/2| and l + 1/2, so in general each of our
single state before can take two different values of j, but in the special case
of l = 0 these are both the same, with j = 1/2. for l 6= 0 then j = l − 1/2
and l + 1/2. And since this is a general angular momentum, we also know
that J2 has eigenvalues j(j + 1)h̄2, and the corresponding −j < mj < j in
integer steps.

lets do an example for l = 1 (so this means n ≥ 2) and s = 1/2.

We could have ml = −1, 0, 1 and for each state we can have ms = ±1/2. so
this tells us that the eigenvalues of Jz = Lz+Sz aremjh̄ where mj = ml+ms.
so we can write this in a table

And here we see somthing strange - there are two ways to get mj = 1/2 or
−1/2 but only 1 way to get mj = 3/2 or −3/2. We get more insight on this
by writing this out in j as well. we know that l = 1 and s = 1/2 can give
us total j = |l − s| = 1/2 or l + s = 3/2. so we could have written our table
instead like this

so now we see that those ’extra’ two states, come from the fact that j can
have j = l + s..|l− s| i.e. that j = 3/2 OR 1/2. if we had just stopped with
j = l + s = 3/2 we wouldn’t have had enough!

So we can see that if we start with l = 1 and s = 1/2 then we have a
4/6 = 2/3 chance to have j = 3/2 and a 1/3 chance to have j = 1/2.
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j mj

3/2 3/2
3/2 1/2
3/2 -1/2
3/2 -3/2
1/2 1/2
1/2 -1/2

Table 2: Possible values of mj resulting from j = |l − s| and j = l + s

13.3 So what is S.L

So what we now need to do is understand L.S. and we get there from
considering J2.

J2 = (L+ S).(L+ S) = L2 + S2 + 2L.S

as S.L = L.S since S and L commute.

L.S =
1

2
(J2 − L2 − S2)

so the eigenvalues of L.S are eigenvalues of 1

2
(J2 − L2 − S2)

i.e. h̄2

2
(j(j + 1)− l(l + 1)− s(s+ 1)) = h̄2

2
(j(j + 1)− l(l + 1)− 3/4)

E1

n,so =< ψn|H
′

soψn >=
e2

8πǫ0c2m2

h̄2

2
(j(j + 1)− l(l + 1)− 3/4) < ψn|r

−3ψn >

we can just look up < 1/r3 >= 1/[l(l + 1/2)(l + 1)n3a3] so we get:

=
e2h̄2

16πǫ0c2m2
(j(j + 1)− l(l + 1)− 3/4)

1

l(l + 1/2)(l + 1)n3a3
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but we had e2/(4πǫ0) = h̄2/(am) so

=
h̄4

4a4n3m3c2

(

j(j + 1)− l(l + 1)− 3/4
) 1

l(l + 1/2)(l + 1)

and we also have E0
n = −h̄2/(2ma2n2) so (E0

n)
2 = h̄4/(4m2a4n4)

= (E0

n)
2
n

mc2

(

j(j + 1)− l(l + 1)− 3/4
) 1

l(l + 1/2)(l + 1)

=
(E0

n)
2

mc2

n
(

j(j + 1)− l(l + 1)− 3/4
)

l(l + 1/2)(l + 1)
l 6= 0

and its a good job we have l 6= 0 from our semi-classical approach (saying
we needed to have angular momentum!) as for l = 0 the denominator → 0!
but since we are only discussing here the states with angular momentum, we
are OK. and this spin-orbit coupling typically leads to E1

n/E
0
n ∼ E0

n/mc
2

13.4 Correction to the potential

However, the spin-orbit coupling is NOT the only thing of importance when
it comes to getting the energy levels exactly right. there are two more terms
which are important at this level.

We assumed the potential was a point source of +ve charge at the centre.
but its not - a proton has some (very small) spatial extent. so there is an
additional correction to the potential energy if the electron is at the same
position as the proton - called the Darwin term - which effectively smears
out the charge a bit

H1

rv =
πh̄2

2m2c2
e2

4πǫ0
δ(r − 0)
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this doesn’t care about spin, and it commutes with all the anguluar momen-
tum operators so we can use non-degenerate perturbation theory.

E1

n =
πh̄2

2m2c2
e2

4πǫ0

∫

V
ψ∗

nlmδ(r − 0)ψnlmdV

This only acts at the origin so it acts only on states which are not zero at
the origin - only l = 0 have Rnl 6= 0 at r = 0 so it acts only on the l = 0 -
which must also have m = 0 (s-states) wavefunctions.

=
πh̄2

2m2c2
e2

4πǫ0
|ψn00(0)|

2

at r = 0 then all the Laguerre polynomials for l = 0 i.e. L2l+1

n−l−1
(2r/na) are

L1
n−1(0) so this is just the constant term in the polynomial and all in all we

get ψn00(0) = 1/(πa3n3) and

E1

n =
πh̄2

2m2c2
e2

4πǫ0

1

πa3n3
=

πh̄2

2m2c2
h̄2

am

1

πa3n3

=
h̄4

2m3c2
1

a4n3

but we had (E0
n)

2 = h̄4/(4m2a4n4) so 1/(a4n4) = 4m2(E0
n)

2/h̄4 and1/(a4n3) =
4m2n(E0

n)
2/h̄4 so

=
h̄4

2m3c2
4m2n(E0

n)
2

h̄4

=
2

mc2
(E0

n)
2n
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