5 Formalism

5.1 Commutator algebra

we saw [A, B] = AB — BA = —[B, A] and that this is NOT necessarily equal
to zero i.e operators do not have to commute. and they will NOT commute if
we are trying to simultaneously measure position and momentum. [z, p|] = ih.
we obviously have [A, A] = 0.

[A+B,C] = (A+B)C —C(A+B) = AC+BC ~CA—CB = [A,C]+|B,C]

[AB,C] = ABC —CAB = ABC — ACB+ACB—CAB = A[B,C]+[A,C]B
[A, BC] = ABC — BCA = ABC — BAC + BAC — BCA = [A, B|C + B[A, C]

e.g [H, x] its always good to give this a wavefunction to see what we are doing
SO

[H7 :L’]¢ - [p2/2m + V(.I‘), ‘I]qu) = [p2/2m, :L’]¢ + [V(%), :L‘]’(ﬁ - 1/2m[p2, ZE]

= 1/2m(plp, z]+[p, x]p) = 1/2m(p.—ih+—ihp)y) = —2ih/2mpp = —ih /mpyp

take away the test wavefunction and we have [H, z] = —(ih/m)p. similarly
all operators A, B which commute share a common set of eigenfunctions - we
can prove this. let Af, = a,f,. then

[A, B] = 0 implies ABf,, — BAf, = 0. so A(Bf,) = an(Bf,) but this means
that Bf, < f, i.e. Bf, =b,fn so A(Bf,) = a,(Bf,) so A(byfn) = anbnfn
in other words [A, B] = 0 implies that A and B SHARE common eigenfunc-
tion f,.

This tells us a bit more about the uncertainty principle - if operators commute
then they share a common set of eigenfunctions, so measuring one does not
disturb the wavefunction for the measurement of the next. If they don;t
commute then in measuring we change the wavefunction so we can’t then
ask what the next observable is on the original wavefunction.

5.2 generalized statistical interpretation

if you measure an observable Q(z,p) on a particle in state W(z,t) then you
are certain to get one of the eigenvalues of the Hermitian operator (). If the



particle is bound then the spectrum of Q) is discrete, so there are eigenvalues
¢n associated with eigenfunctions f,.

Eigenfunctions have the property that they are orthonormal so [ f f,,dx =
0nm- They are also complete in that they span the space so any arbitrary func-
tion W(z,t) can be written as a linear sum of them ¥ (z,t =0) = X, ¢, fu(2)
Then the probability of measuring g, is |c,|* where ¢, = [ f&x¥(x,t = 0)dx

upon measurement the wavefunction ’collapses’ into the state f,,. Any further
measurement will always return the value g,

The observable energy only has a deterministic value if the system is in one
of these eigenstates of the Hamiltonian 1,,, at which point the energy is FE,.
If its not one of the eigenstates, if it has instead some arbitrarily shaped
wavefunction v, then this can be expanded out as a sum of all the different
eigenstates so ¥ = Y, ¢,¥,. But then the outcome is NOT deterministic.
the systems can only be on ONE of the states. we don’t know which one, we
only know the probability as we know the average energy is

< FE >= /zﬁ*HzﬁdV = /ZCZ¢;H(ZCm¢m)dV = ZCZZCm/WEmWndV

= Z C:; Z Cn B Onm = Z(cn)QEn

n

the only way this works is if each state n has probablity of ¢ of being
observed.

If we prepare many identical copies of the system, i.e. all having the same
initial state wavefunctions v then the probability we measure the energy is
E,, is ¢ but we can’t tell WHICH system will give us which energy.
Probability is at the heart of quantum mechanics. It is inherently non-
deterministic, a statistical theory.

6 Schroedinger in 3D

so far we have stuck in only 1D. but we will need to go to 3D to treat a lot of
physical situations like of electrons in atoms. again we can use our operator
approach.



6.1 cartesian coordinates

if we are in 3D, then F = T'+V but kinetic energy can now have components
in all 3 directions. so T = p2/2m was what we had when the motion was
just along the x axis. so now in 3D we have total sqared momentum to use
in kinetic energy is given by p? = p2 + pf, + p%. Hence
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so our 3D Schroedinger equation is

+ V(z,y,2,1t)
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where ¥ = W(x,y, z,t). We can write this more compactly in vector form by
recognising that r = xi = yj+ zk so ¥(z,y, 2,t) = U(r,t) and V(z,y, 2, t) =
V(r,t). Then

L oV(r,t) o,
ih TR —%V U(r,t)+ V(r,t)¥(r,t)

and we can use the same separation of variables techniques to show that as
long as the potential is NOT dependent on time then the equation is separable
in time and space as W, (r,t) = ¥, (r)e”*F»/" where the time independent
equation to solve is

—h2
or going back explicitally to cartesian coordinates

_hQ (8277Z)n 82¢n + 8277Z)n
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This is separable into ¥, (x,y,2) = X(2)Y (y)Z(2) if V(x,y,z) = V(z) +
Vy(y) + Va(2).
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these three groups are each dependent only on x, y and z respectively so
NONE of them can depend on x,y or z - they must be constants which we’ll
call I;, B, E,. Then we get the three equations

—h? X (x)

% 02 + VgCX(I) = E:DX(ZL‘)
I PV () YVY(y) = B,Y(y)
2m  Oy? yt W)= Bt
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% 922 + ‘/zZ(Z) = EZZ(Z)

and B, + B, + E. = E



