
we saw last lecture that trapping a travelling wave in a potential set up
interference. this is only constructive for certain wavelengths ie energies and
sets up standing waves. If the potential is constant then the wavefunction
is separable, we turn a single partial differential equation into 2 ordinary
differential equations. One is easy, T (t) = e−iEt/h̄, the other is the time
INDEPENDENT schroedinger equation. so to find our solutions, we have
to specify V (x), and solve the time INDEPENDENT schroedinger equation
which is Hψ = Eψ which is an eigenvalue/eigenvector equation (operator
acting on some function returns that function multiplied by a constant -
the equation sets BOTH the function and the energy) This typically gives
an infinite number of solutions ψE(x). for bound particles the energies are
quantised so we can characterise these as ψn(x) corresponding to energy
En. Then the fully general solution to the time DEPENDENT schroedinger
eqyation can be written as the linear sum of all the solutions Ψ(x, t) =
∑

n cnψn(x)e−iEnt/h̄

3.3 Orthoganality of Eigenfunctions

Ψ(x, t) =
∑

n cnψn(x)e−iEnt/h̄ where cn is the weighting of state n
so suppose we take one for n and another for m. Then we have

Ĥψn(x) = Enψn(x)

integrate with ψm∗
∫

ψ∗
mĤψn(x)dx = En

∫

ψ∗
mψn(x)dx

But H is hermitian which means that
∫

f ∗Hfdx =
∫

(Hf)∗fdx. However,
Hermitian means more generally (but its a bit formal see griffiths if you want)
∫

g∗Hfdx =
∫

(Hg)∗fdx.
∫

ψ∗
mĤψn(x)dx =

∫

(Hψm)∗ψn(x)dx

But ψm is another of the eigenfunctions, this time with energy Em so
∫

(Hψm)∗ψndx = E∗
m

∫

ψ∗
mψndx = Em

∫

ψ∗
mψndx

bring it all together

1



∫

(Hψ∗
m)ψn(x)dx = Emψ

∗
mψndx = En

∫

ψ∗
mψn(x)dx

so this requries
∫

ψnψ
∗
mdx = 0 for n 6= m i.e. that energy eigenvectors

are orthoganal. and normalised energy eigenvectors are orthonormal i.e.
∫

ψ∗
mψndx = δmn

Hermitian operators give eigenvalues which are real and eigenvectors which
form an orthoganal set.
we are also going to ASSUME they form a complete set i.e. they span the
space so any function f(x) =

∑

n cnψn can be written as a linear sum of
the energy eigenfunctions - but this was the same condition for our general
solution to the time dependent Schroedinger equation where we had Ψ(x, t) =
∑

cnΨn(x, t) =
∑

n cnψn(x)e−iEnt/h̄ so that at t = 0 we have Ψ(x, t = 0) =
∑

cnψn(x)

3.3.1 Example: the infinite square well

the energy eigenfunctions have the form

ψn(x) =

√

2

L
sin nπx/L E =

n2π2h̄2

2mL2

then if we have states n and m we have
∫

ψ∗
n(x)ψm(x)dx =

2

L

∫ +L

0
sin(nπx/L) sin(mπx/L)dx

Wolfram alpha
integrate Sin[n Pi x/L] Sin[m Pi x/L] from 0 to L
the indefinite integral form is actually the most useful

[
L sin(π(n−m)x/L)

2π(n−m)
− L sin(π(n+m)x/L)

2π(n+m)
]L0

L sin(π(n−m)x/L)

2π(n−m)
− L sin(π(n+m)x/L)

2π(n+m)

so the total is this × 2
L

i.e.

=
sin(π(n−m))

π(n−m)
− sin(π(n+m))

π(n+m)
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when n 6= m then both sin terms are for an integer times π so both are zero.
when n = m the denominator on the first term goes to zero and we have
sin(π0)/0 → π (limit of sin(ax)/x = a as x → 0! so this is 1 when n = m
and so we can see explicitally that these are orthonormal.
we can also see that they span the space - we know from Fourier analysis
that any function can be expressed as a sum of sin waves.

3.4 General solution: Wavefunctions with multiple states

so, our general solution is an arbitrary linear superposition of different sta-
tionary states given by the eigenfuctions ψn(x) associated with energy En.

Ψ(x, 0) =
∑

n

cnψn(x)

and these eigenfunctions are mutually orthogonal. But if we MEASURE the
system, it can only be in ONE of these eigenfunctions - the electron wave
has to fit into the potential. so the multiple terms are telling us about the
probability of finding the electron in a given state.
Lets just go with 2 terms to start with

ψ(x, 0) = c1ψ1(x) + c2ψ2(x)

we konw that we still need
∫

ψ(x, 0)∗ψ(x, 0)dx =
∫

(c∗1ψ
∗
1 + c∗2ψ

∗
2)(c1ψ1 + c2ψ2)dx

= c21

∫

ψ∗
1ψ2dx+ c∗1c2

∫

ψ∗
1ψ2dx+ c1c

∗
2

∫

ψ∗
2ψ1dx+ c22

∫

ψ2
2dx = c21 + c22 = 1

so each state has a weighting of c2n to the probability. And when we measure
the energy, there are two possible values we can get - E1 or E2 - so we should
see the c2n the probability of finding the system in state n i.e. of measuring
energy En.
so now we’ll do this more formally. In order to normalise our total wavefunc-
tion we need

∫

ψ∗(x)ψ(x)dx = 1

∫

∑

m

c∗mψ
∗
m(x)

∑

n

cnψn(x)dx = 1
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∑

m

∑

n

∫

c∗mcnψ
∗
m(x)ψn(x)dx = 1

∑

m

∑

n

c∗mcnδnm = 1

∑

m

|cm|2 = 1

so each state has a probability weighting of c2m
Quantum wierdness interpretation: this is the probability of measuring the
system in this state i.e. of measuring an energy Em

3.4.1 Ψ(x, 0) = N(2ψ1 + ψ2)

The individual ψ1, ψ2 are alreay normalized so we just need to know how
to normalise this weighted sum. We have

∑

n c
2
n = 1 where c1 = 2N and

c2 = N . so 4N2 +N2 = 1 or N = 1/
√

5.
hence Ψ(x, 0) = 1√

5
(2ψ1 + ψ2)

the probability of measuring E1 is (2/
√

5)2 = 4/5 and the probability of
measuring E2 is 1/5.

3.5 Expectation for Energy in a system with wavefunc-

tion with multiple states

The average (expectation) value of the energy is

< E(t = 0) >=
∫

Ψ(x, 0)∗HΨ(x, 0)dx =
∫

∑

m

c∗mψ
∗
m(x)H

∑

n

cnψn(x)dx

=
∑

m

∑

n

c∗mcn

∫

ψ∗
m(x)Hψndx =

∑

m

∑

n

c∗mcn

∫

ψ∗
m(x)Enψndx

=
∑

m

∑

n

c∗mcnEnδmn =
∑

m

c2mEm

i.e. the expectation value of the energy is the probability weighted sum of
the energies associated with each state.
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3.5.1 Ψ(x, 0) = N(2ψ1 + ψ2)

mean energy after multiple measurements of systems in this state is 4/5E1 +
1/5E2. suppose this a system where En = n2E1 then < E >= 4/5E1 +
1/54E1 = 1.6E1

No individual measurement will give this value - we get E1 80 per cent of the
time, and 4E1 the remaining 20 per cent of the time.

3.6 Time dependence of multiple states

Ψ(x, t) =
∑

n

cnψn(x)e−iEnt/h̄

so the contribution of the different energy states changes with time even
though each one on its own is a stationary state.
We can see this explicitally by looking at the probability for a two state
system Ψ(x, t) = c1ψ1(x)e

−iE1t/h̄ + c2ψ2(x)e
−iE2t/h̄. and lets make it simple

by choosing states that are real so ψ∗ = ψ and cn=c∗n

P (x, t) = Ψ∗Ψ = (c∗1ψ
∗
1e

iE1t/h̄ + c∗2ψ
∗
2e

iE2t/h̄)(c1ψ1e
−iE1t/h̄ + c2ψ2e

iE2t/h̄)

= |c1|2 ∗ ψ2
1 + |c2|2ψ2

2 + c1c2ψ1ψ2e
iE1t/h̄e−iE2t/h̄ + c1c2ψ1ψ

∗
2e

−iE1t/h̄eiE2t/h̄

so the last two terms contain e±i(E2−E1)t/h̄ i.e. they are oscillatory in time.
Let E2 − E1 = h̄ω and these go to e±iωt = cos±iωt+ i sin±iωt.

= |c1|2 ∗ ψ2
1 + |c2|2ψ2

2 + c1c2ψ1ψ2(e
−iωt + eiωt)

= |c1|2 ∗ ψ2
1 + |c2|2ψ2

2 + c2ψ1ψ2(cosωt− i sinωt+ cosωt+ i sinωt)

= |c1|2 ∗ ψ2
1 + |c2|2ψ2

2 + 2c1c2ψ1ψ2 cosωt

so the probability density IS a function of time.
it is still normalised so probablity of finding the particle SOMEWHERE
∫

P (x, t) = 1 as the orthoganality of eigenfunctions kills the time dependent
term in the integral. but when we start asking for expectation values for
systems which are NOT in an energy eigenstate then these CAN be time
dependent.
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