
7.2 Eigenvectors of L2

so now we know that LzΦm = mh̄Φm where Φm = (2π)−1/2eimφ. But we also
know that there has to be a common set of eigenfunctions which are BOTH
eigenfunctions of Lz AND of L2. We will call these Ylm(θ, φ). We already
know that these have to be eigenfunctions of Lz so

LzYlm(θφ) = mh̄Y (θφ)

but these must also be eigenfunctions of L2 so

L2Ylm(θφ) = l(l + 1)h̄2Ylm(θφ)

where again we have choosen to scale by h̄2 and the reason for calling the
eigenvalue l(l + 1) will become clear soon!

We can see that Ylm(θφ) must be separable into Θlm(θ)Φm(φ) where Φm is
as above and Θ can only be a function of θ and not φ as otherwise it would
be changed by Lz = −ih̄ ∂

∂φ
and then this wouldn’t be an eigenfunction of

both of them.

so solving
L2Ylm(θφ) = l(l + 1)h̄2Ylm(θφ)

L2Θ(θ)Φm(φ) = l(l + 1)h̄2Θ(θ)Φm(φ)
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divide out Φ to get just a function of θ so ∂/∂θ → d/dθ
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m2 = −l(l + 1)Θ(θ)

and rearrange
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Θlm = 0

the equation is ugly but well known mathematically. When m = 0 the solu-
tions are Legendre polynomials Pl(cos θ), where the higest order polynomial
term is of order l where l = 0, 1, 2 . . . and is called the orbital angular mo-
mentum quantum number some examples are

P0(cos θ) = 1

P1(cos θ) = cos θ

P2 =
1

2
(3 cos2 θ − 1)

P3 =
1

2
(5 cos3 θ − 3 cos θ)

so like the hermite polynomials, the pattern is that even l only has even
powers of cos θ, odd l only has odd powers of cos θ.

for m 6= 0 the solutions are given by the associated Legendre polynomials
which are related to the |m|th derivative of Pl. But since Pl is a polynomial
of degree l, then its l+1 derivative will vanish. so for a fixed value of l, |m|
can only take the values 0 . . . l, so the allowed values of m for a given l are

m = −l,−l + 1,−l + 2 . . . 0, 1, 2 . . . (l − 1), l

so there are 2l+1 values of m for every l.

Then we normalise these to get our solutions for Θlm(θ). the normalisation
integral is only over θ so

∫

Θ∗
lm(θ)Θlm(θ) sin θdθ. then we get

Θlm = (−1)m
(2l + 1

2

(l − m)!

(l + m)!

)

1/2

P m
l (cos θ) m ≥ 0

Θlm = (−1)mΘl|m| m < 0
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7.3 Spherical harmonics Ylm(θφ)

the eigenvectors common to L2 and Lz are given by

Ylm = ΘlmΦm = (−1)m
(2l + 1

4π

(l − m)!

(l + m)!

)

1/2

P m
l (cos θ)eimφ m ≥ 0

Ylm = (−1)mY ∗
l,−m m < 0

with allowed values m = 0,±1,±2 . . . ± l.

we can now see the limit on values which m can take more physically as

< L2 >=< L2

x + L2

y + L2

z >=< L2

x > + < L2

y > + < L2

z >

since these operators are all hermitian then these are all real so

< L2 > ≥ < L2

z >

∫ ∫

Y ∗
lmL2Ylm sin θdθdφ ≥

∫ ∫

Y ∗
lmL2

zYlm sin θdθdφ

∫ ∫

Y ∗
lml(l + 1)h̄2Ylm sin θdθdφ ≥

∫ ∫

Y ∗
lmLz(mh̄Ylm) sin θdθdφ

l(l + 1)h̄2 ≥
∫ ∫

Y ∗
lm(m2h̄2Ylm) sin θdθdφ

l(l + 1) ≥ m2

its obviously true for m = l, and not true for m = l+1 as the rhs is l2 +2l+1
which is bigger than the lhs of l2 + l. so this limits the values of |m| ≤ l

The fact that we have determined Lz means that Lx and Ly cannot be si-
multaneously determined - if we measure them we will get a value which is
quantised at 0,±h̄,±2h̄ etc but the actual value is uncertain. However, we
can explicitally evaluate their averages, < Lx > and < Ly >. And these both
turn out to be zero. so although the particular value of Lx and Ly cannot be
predicted, their average value can.

So how do we visualise a system where we have L2 and Lz with quantised
values, but where < Lx > and < Ly >= 0? we can do this with a classical
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vector model. The angular momentum vector of magnitude
√

l(l + 1)h̄ pre-
cesses around the z axis, so the z component is always fixed at mh̄. Because
of the precession, < Lx > and < Ly > vanish.

so thats the agnular momentum done. what about the wavefunctions them-
selves? we can plots these Y m

l out - A polar plot represents the magnitude
(absolute value) of the function as the length of a line centered at the origin,
and it represents the values of the angles θ, φ by the direction of the line.

but more useful than wavefunctions of course is probability distributions.

The probability of finding the particle within volume dV = dA = sin θdθdφ of
position θ, φ is dP = |Ylm|

2 sin θdθdφ so if we want the probability density in φ
then we have to integrate over all theta dP = D(φ)dφ =

∫ π
θ=0

|Ylm|
2 sin θdθdφ

conversely, if we wanted the probability density in θ we’d do dP = D(θ)dθ =
∫

2π
0

|Ylm|
2dφ sin θdφ similarly, if we want the probabilty per unit area on a

sphere, then its dPdA = |Ylm|
2dA so

D(A) = Y ∗
lmYlm = Θ∗

lmΦ∗
mΘlmΦm = (2π)−1Θ∗

lmΘlm

The φ dependence drops out, so the probability of finding the particle is
independent of φ so we can plot these more easily. This gives a polar diagram,
showing the dependence of the probability on θ. A polar plot represents the
magnitude (absolute value) of the function as the length of a line centered
at the origin, and it represents the values of the angle θ by the direction of
the line.
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