
We saw last lecture that we get our classic double slit interference pattern

slit width a, and separation d gives intensity I / cos2(⇡✓d/�)sinc2(⇡✓a/�)
where sinc2x = sin x/x

but its made from individual detection events. Those events happen AT
RANDOM within the expected wave intensity interference pattern! We can’t
predict exactly where an individual photon will be detected, we can only
predict a PROBABILITY where the individual photon will land using the
wave intensity.

1.5 uncertainty on momentum - localise a particle

This has profound consequences in terms of an ultimate limit on our knowl-
edge of position! Photons are not like particles in Newtonian mechanics if
they sometimes behave like waves. We can illustrate this by the uncertainty
principle for a single slit. Suppose we have only a single slit, with width a.
Then a wave with wavelength � is di↵racted into a pattern y(✓) / sin(x)/x
where x = ⇡a✓/�.

We don’t know where any individual photon will end up on the screen. We
only know that after a while, we’ll get the intensity pattern predicted by the
wave amplitude squared!

Since position on the screen is uncertain to some level, the photon momen-
tum must also have some level of uncertainty. The way to see this is that
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the photons come along with no momentum in the y direction. Yet they
are di↵racted to positions where y > a. On average the whole pattern is
symmetric about 0, but any individual photon has to get to its y position so
it must have some momentum in the y direction.

So lets just think about the first maximum as 85% of photons end up in this
region. Peak is when x ! 0, sin x/x ! x/x ! 1. minima when sin(x) = 0 so
x = n⇡ for n 6= 0. The first maximum is from n = �1 to n = 1 corresponding
to angles �✓1 ! ✓1. This gives x = ⇡ = ⇡✓1a/� so ✓1 = �/a.

So 85% of the photons go through a deflection |✓| ⇠ ✓1

Then momentum py/px ⇡ tan ✓1 ⇡ ✓1. so py ⇡ px✓1 = px�/a

But px = h/� so py  h/a.

so there is an inherent uncertainty in momentum, of order �py = h/a which
comes by constraining the photons to a small slit in this direction �y = a.
So we have a real uncertainty in where any individual particle ends up of
�y�py ⇠ h.

More careful consderation of factors of 2⇡ gives an absolute limit on knowl-
egde of any individual photon of �y�py ⇠ ~/2.

So quantum particles like photons are not like classical particles. there is an
irreducible limit to the accuracy at which their momentum and position can
be calculated in any direction. The better we know position along any axis,
the more uncertain is the value of momentum along that same axis.

there is no classical description in terms of just particles or just waves which
works for understanding the behaviour of light.

1.6 Uncertainty on position - localise a wave

Suppose we have an EM wave, travelling from left to right with velocity
c = �f = !/k where k is wavenumber k = 2⇡/� and ! = 2⇡f is angular
frequency.
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This has a single unique value of wavelength � but can be anywhere in space.
There is infinite uncertainty on its position! But we know now that photons
have p = h/� = ~k so there is a one to one relation between wavelength
and momentum. A plane wave has no uncertainty on its momentum, but is
extended over all space so there is infinite uncertainty on its position.

We want to localise the wave in space - have most of its amplitude over a
small range in position. And we can do this by adding in another wave of
di↵erent wavelength so that we get interference ’beats’

e.g for 2 waves propagating from left to right along the x direction, with
di↵erent wavelength i.e. di↵erent values of k = px/~ and E then we get
interference ’beats’

y(x, t) = A1 sin[(p1xx� E1t)/~] + A2 sin[(p2xx� E2t)/~]

Lets just look at a single time, say t = 0, and let A2� = �A1 = 1 for
simplicity. This is

y(x, t = 0) = [sin(p1xx/~) + sin(p2xx/~)] = 2 cos[(p1x � p2x)x/2~] sin[(p1x +
p2x)x/2~]

The beat pattern means there is larger amplitude at some points than others,
so there is a bigger probability to find the photon at these points than at
the others. We have partially localised the wave on the beat size scale of
�x ⇠ �beat/2. �beat = 2h/(p1x � p2x)

BUT we did this by allowing di↵erent momenta components. we no longer
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have a well defined momentum - we can have either p1x or p2x. so there is a
spread in momentum �px = (p2x�p1x)/2 about the mean value (p1x+p2x)/2

so we can combine them and calculate the typical uncertainty on position
and momentum by

�x�px = 2h/[(p1x � p2x)]⇥ (p2x � p1x)/2 = h

Waves have intrinsic uncertainty on position and momentum - it is NOT
fundamentally a measurement issue, its a fundamental issue of waves, that
they are spread out infinitely in space if they have a unique momentum, and
the way to localise the wave is to add waves of di↵erent momenta. The better
we localise in space, the wider the range of momenta needed, until we can
get a unique point in space only from an infinite range of momenta.

2 Particles as waves

2.1 double slit experiement

if photons are light behaving as a particle rather than a wave, then what
about particles? can particles behave like waves?

yes indeed, this is exactly what we see. Electrons - little bits of matter - give
a di↵raction pattern in the double slit experiment. this is direct confirma-
tion that they have wave-like properties. Its EXACTLY like photons, with
the interference pattern emerging from the build up of many INDIVIDUAL
particle detections on the screen. Only this time we expected the individual
detection events but NOT the interference pattern!

Because there is an interference pattern we know there must be a wavelength,
and we can calculate this from the spacings of the maxima and minima

eg electrons with KE of 54eV produce first maximum at an angle of 50� when
scattered through Ni crystal with spacing d = 0.215nm which was measured
from X-ray di↵raction
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m� = d sin ✓ so � = 0.165nm.

If this were light we’d have � = h/p - but now we have particles so p = mv

p2/2m = KE so 54⇥ 1.6⇥ 10�19 ⇥ 2⇥ 9.1⇥ 10�31 = p2 and p = 3.9⇥ 10�24

kg m/s � = h/p = 1.66⇥ 10�10 m i.e. 0.166nm as above.

so on small enough scales, electrons act as waves not particles. which means
they are like light - neither a wave nor a particle but having aspects of both.

Example: Calculate the de broglie wavelength for electrons with energy of
1eV and 1keV

(we won’t go higher than this as we’d need to think about relativity as we
are getting close to v = c.)

i) � = h/p - but given energy so use E = p2/2m or p =
p
2mE and 1eV=1.6⇥

10�19 J so p = 5.4⇥ 10�25 kg/m/s and � = 1.22⇥ 10�9 ie 1.22nm

ii) KE=1 keV - so should be
p
103⇥ smaller ie 3.8⇥ 10�11m=0.038nm

According to de Broglie, all particles have wave-particle duality, they all have
wavelength � = h/p. Smaller mass particles are more obviously wavy! but
bigger ones have smaller wavelength so their waviness is only apparent on
smaller scales.

example A proton is accelerated though a potential of 54V - what is its
wavelength? compare this to an electron accelerated through the same po-
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tential

� = h/p and we are non-relativisitic so K = eV = p2/2m

for electrons K = 1.6 ⇥ 10�1954 = 8.6 ⇥ 10�18 so p =
p
2mK = 3.9 ⇥ 10�24

kg/m/s so � = h/p = 1.66⇥ 10�10m

for protons, m is 1840x bigger so p is 42⇥ bigger and � is 42x smaller.

In the macroscopic world ’things’ are either waves or particles but not both.
Electrons and photons are NEITHER like classical waves NOR like classical
particles. the thing they are most like is each other we don’t have good ways
to picture this yet though we do have excellent and very powerful ways to
calculate their behaviour.

Experiments show us that the wave pattern gives us a statistical distribution
- the intensity (amplitude squared) gives us the probability that any individ-
ual event will be detected at each position on the screen. we can’t predict
individual positions but we can predict the probability of detection at each
point.

Heisenburg uncertainty principle as a FUNDAMENTAL limit on

our knowledge of position and momentum �x�px � ~/2

Quantum particles combine classical wave and particle properties. We detect
photons/electrons as individual events like classical particles. Yet classically,
individual particles have individual trajectories which can be completely
known, but quantum particles have an irreducible uncertainty on position
and momentum.
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