
4.1 Interpretation of  

The wavefunction describes something about how the particle is distributed
in space but the fact that we needed to use complex numbers in our justifi-
cation for the Schroedinger equation shows immediately that we should not
attempt to give wavefunctions a physical existence in the same way as water
waves have a physical existance. complex quantities cannot be measured by
any actual physical instrument.

so we don’t want to ask the questions like what is waving and what is it
waving in. its questions like these that led to the aether in electromagnetism!
but because our wave function here can be complex we are not tempted to
make the same mistake again.

Instead, we should think of the wave function as containing all the informa-
tion which the uncertainty principle allows us to know.

Going back to the double slit experiment, but turn down the intensity of
the electon source so that only one electron comes through at a time. we
can see the single hits on the screen where each electron lands (showing that
individual electrons really are going through the slits). But after a while,
when many ’single’ particles have built up a pattern, we get the characteristic
pattern of interference. Interference does not occur between electrons, but is
a property of a single electron.

One single measurement does not have a predictable result - the electron
hit can be anywhere in the pattern. only when we consider many identical
systems do we get the full pattern. This suggests that for an individual
particle the process is of a statistical nature, so it is telling us something
about the probability that the particle will hit the screen at a certain point.

Our wavefunction is complex, but probabilities must be real. This suggests
that we should associate probability / | (x, t)|2 =  ⇤ - this is always real
for any complex number! Suppose  = a + ib where a, b are real. Then
 ⇤ = (a� ib)(a+ ib) = a2+ b2. And the square makes is similar to classical
waves where the intensity of a wave I / Amplitude2.

Then the probability of finding a particle between x and x+dx at time t is
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/ | (x, t)|2dx and the interpretation of the wavefunction is a statistical one.
We talk about the wavefunction of an individual particle but it is more useful
to think about it as describing the behaviour expected from an ensemble of
identical systems.

4.2 Normalisation

If we are interpreting | (x, t)|2 as relating to probability of detection of the
particle, then this means we have a normalisation condition since there is
unity probability that the particle is SOMEWHERE i.e. if we integrate over
all space

R +1
�1 | (x, t)|2dx = 1

Then we can interpret | (x, t)|2dx as the probability to find the particle
within position x ! x+dx at time t. | (x, t)|2 is NOT in itself the probability
- its the probability density function.

lets go into this with our 1D Schrodinger equation for a free particle  (x, t) =
Aei(kx�!t). Then
Z +1

�1
 ⇤(x, t) (x, t)dx = A2

Z +1

�1
e�i(kx�!t)ei(kx�!t)dx = A2

Z +1

�1
dx = 1

Thats not a good start. Its because a plane wave along the x axis is com-
pletely delocalised - there is constant probability to find it anywhere along
the x-axis. Our plane wave has definite momentum p = ~k in the x-direction
so �p = 0 hence �x is 1 because of the Heisenburg uncertainty principle.

In practice we’d confine it by the experiment to a box of length L >> � (e.g.
the size of the room!) so

A2

Z L

0

e�i(kx�!t)ei(kx�!t)dx = A2L = 1

so then A⇤A = 1/L so we are free to choose this to be any (complex) number
where A2 = 1/L eg A = 1/

p
L or A = �1/

p
L or A = i/

p
L or A = �i/

p
L

or.... so pick the one which makes life easy and go for A = 1/
p
L. we know

that we don’t have a physical meaning for the wavefunction itself, only its
square, so this phase doesn’t matter.
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so our normalised wavefunction is  (x, t) = 1/
p
Lei(kx�!t). The probabil-

ity of finding it in any section from x to x + dx is  ⇤(x, t) (x, t)dx and
 ⇤(x, t) (x, t)dx = dx/L so there is equal probability of finding a particle
with this wavefunction anywhere in the box of size L

The animation linked from the webpage shows what this looks like for a
particle travelling from left to right - the top panel shows the potential (black
line, U(x) = 0) and the particle energy (green). The second panel shows the
real (red) and imaginary (blue) part of the wavefunction.

 (x, t) / ei(kx�!t) = cos(kx� !t) + i sin(kx� !t)

so the real part (red) is / cos(kx� !t) and the imaginary is / sin(kx� !t)
These are both travelling waves - they depend on time.

but the probability (bottom panel) is constant with time even though the
 (x, t) are clearly not as  (x, t)⇤ (x, t) / e�i(kx�!t)ei(kx�!t) = 1

if instead we had added together multiple waves of di↵erent wavelength to
localise the electron (a wavepacket) then the di↵erent � / 1/p / 1/v so
they have di↵erent velocities and the it spreads out (unlike photons which
all travel at c)

5 time independent Schroedinger equation

The example above has U(x, t) = U(x) = 0, i.e. there is no external po-
tential. More generally, if U(x, t) = U(x) (so the potential is independent
of time but is not necessarily zero) then the Schroedinger equation simpli-
fies as the wavefunction is separable  (x, t) =  (x)T (t) e.g the free particle
solution is  (x, t) = Aei(kx�!t) = Aeikxe�i!t =  (x)e�iEt/~ This time de-
pendence is the same for ANY constant potential, so we can always write
 (x, t) =  (x)e�iEt/~ and then get an equation for the spatial (time indepen-
dent) part of the wavefunction for any energy E, separated out from its time
dependence, and we can solve for it from the time independent Schroedinger
equation which is now in standard not partial derivatives

�~2
2m

d2 (x)

dx2
+ U(x) (x) = E (x)
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The wave function  (x, t) for a state of definite energy E is the product of
a time independent wavefunction  E(x) and its time dependence which is
e�iEt/~.

States of definite energy are called stationary states because their probability
distribution function is NOT dependent on time

| (x, t)|2 =  ⇤(x, t) (x, t) =  ⇤(x)[e�iEt/~]⇤ (x)e�iEt/~

=  ⇤(x)eiEt/~ (x)e�iEt/~ =  ⇤(x) (x) = | (x)|2

5.1 particle in an infinite potential 1-D box

consider a particle trapped in a 1-D box by an infinite potential well at x = 0
and x = L. so U(x) = 1 for x < 0 and x > L while U(x) = 0 for 0  x  L.

 (x) must be zero where the potential is infinite - there is no probability to
find a particle here!

in the region 0 < x < L with U(x) = 0 then we are back to the free particle
equation

� ~2
2m

d2 (x)

dx2
= E (x)

when we looked at the solution of this for a particle travelling from left to
right we had  (x) = eikx but this is not zero for x < 0 (the free particle wave
went over all space).

but a wave travelling from right to left is also a solution to the free particle
Schroedinger equation  (x) = e�ikx. And so a more general solution is the
combination of the two:

 (x) = Aeikx +Be�ikx. And physically this is what we actually expect from
REFLECTION OF A WAVE FROM A BOUNDAY! (see linked animation!)

so then we have  (x) = A[cos(kx) + i sin(kx)] + B[cos(�kx) + i sin(�kx)

= A[cos(kx)+i sin(kx)]+B(cos(kx)�i sin(kx)] = (A+B) cos(kx)+i(A�B) sin(kx)
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we need  (0) = 0 so this means A + B = 0 i.e. B = �A which is what
we expect for complete reflection. so then  (x) = 2iA sin(kx) = C sin(kx)
where we simplify by setting C = 2iA1.

but we also need  (L) = 0 so this means that 0 = C sin(kL) which is satisfied
for kL = n⇡ or k = n⇡/L = 2⇡/� so � = 2L/n for n = 1, 2, 3 . . .

The wavelength is QUANTISED into units which fit a (half) integer number
of times into the box.

5.1.1 Normalisation

the probability to find the electron if we look over all space must be unity
(its somewhere!)

Z +1

�1
| (x)|2dx =

Z 0

�1
| (x)|2dx+

Z L

0

| (x)|2dx+

Z +1

L

| (x)|2dx

=

Z L

0

| (x)|2dx = C2

Z L

0

sin2 n⇡x/Ldx

sin2 ✓ = 1/2[1 � cos(2✓)] so we can evaluate - set y = 2n⇡x/L so dy =
2n⇡dx/L

= C2

Z L

0

1/2[1� cos 2n⇡x/L]dx = C2

Z L

0

1/2dx� C2

Z 2n⇡

0

cos y(L/(2n⇡)dy

= C2L/2� C2(L/(2n⇡)[sin y]2n⇡0 = C2L/2

hence C2 = L/2 = C⇤C. We can choose C =
p

L/2 for simplicity.

 n(x) =

r
2

L
sin

n⇡x

L
En =

n2⇡2~2
2mL2

n = 1, 2, 3 . . .
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5.1.2 Examples

what is the probability to find the electron within 0  x  L/4 in the n = 1
state? compare this to the classically expected probability?

2/L

Z L/4

0

sin2(⇡x/L)dx = 2/L

Z L/4

0

1

2
[1� cos(2⇡x/L)]dx

= 1/L

Z L/4

0

dx� 2/L

Z L/4

0

cos(2⇡x/L)dx

let y = 2⇡x/L so dy = 2⇡dx/L (remember to change the limits on the
integral)

(1/L)(L/4)� 2/L1/2

Z 2⇡L/(4L)

0

cos yLdy/(2⇡) = 1/4� 1/L(L/2⇡)[sin y]⇡/20

= 1/4� 1/(2⇡) = 0.0908

challenge: sketch the probability distribution for the n = 1 state used above.
Now sketch the one for the n = 10 state and the classical expectation. which
one of n = 1 and n = 10 is closer to the classical case?
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