
Now we can solve this by adding some constraints - first,  ⇤ is going to be
a probability density function so it’d better be normalisable i.e. FINITE so
 should be finite.

Region 1: x < 0

 (x) = C1e⇢x +D1e�⇢x. As x ! �1 then the term D1e�⇢x ! 1! which is
unphysical! Hence D1 = 0 in region 1, so the wavefunction here is  (x) =
C1e⇢x

Region 3: x > L

 (x) = C3e⇢x+D3e�⇢x. now we need to think about what happens as x ! 1
and now its the term C3e⇢x ! 1 so C3 = 0 and  (x) = D3e�⇢x

Solving this in full generality is really nasty, so here we are just going to build
physical intuition from the remaining constraints we know we must have -
continuity of the wavefunction and its derivative.

when the potential U is large we must have something like the infinite poten-
tial well. But it has to have an exponential tail of  which extends into the
classically forbidden region! We have to match the di↵erent wavefunction so-
lutions (sines/cosines onto the exponetial tail) smoothly across the boundary,
and we have to match their derivatives smoothly across the boundary.

comparison of infinite and finite square well potentials

its clear that with the finite potential U0 we have something like the infinite
well for bound states with E < U0 for 0 < x < L but with exponential tails
which can extend into the classically forbidden regime (E < U0 for x < 0
and x > L). In the region x < 0 we found / e⇢x (as x is -ve! so the
probability of finding the electron within a distance dx of x in this forbidden
region is /  ⇤ dx = e⇢xe⇢x / e2⇢x. For x > L the distance into the barrier is
l = (x� L) rather than just x. so for x > L we see the probability / e�2l/l0

where l0 = 1/⇢ is the characteristic length over which the particle extends
into the forbidden region.

This makes a lot of sense as l0 = 1/⇢ = ~/
p

2m(U0 � E). The bigger U0

is compared to E i.e. the bigger the energy gap, the smaller the extent to

16



which the particle can penetrate into the forbidden region.

The fact that the wavefunction extends outside of the well means that the
wavefunction in the well doesn’t have to be so highly curved i.e. its wave-
length is bigger for any given n, so its energy is lower than the same n in the
infinite well. En,finite < En,1.

For any n, we have to join the exponential tails smoothly onto the bound
oscillatory solution. so for odd n both tails are / +e�⇢l whereas for even
n they have +ve sign on one side, and -ve sign on the other. but remem-
ber probability doesn’t care about the sign in front of the wavefunction (or
whether its real or complex!). for a single energy state, probability / | n(x)|2

The finite well depth also means that there are only a finite number of bound
states, instead of the infinite number in the infinite well.

so the link shows a finite well with otherwise the same properties as the
infinite well. Now there are only 4 bound states, and the 4th one is ONLY
JUST bound - the probability is peaking at the barrier at x = 0, L but there
are still 4 maxima which are contained within the well.

7 Receipe to sketch a general bound wave-

function shape

1) find the regions the particle can exist i.e. where E > U . the time in-
dependent schroedinger equation here will be of the form d2 /dx2 = �k2 
where k2 = 2m(E � U)/~ and E � U > 0. solutions are oscillatory  /
A cos kx+B sin kx

the lowest energy state will have a wavefunction with one maximum, the next
will have 1 max and 1 min, then next will have 2 max, 1 min etc...

THESE WILL NOT GO TO ZERO at 0 and L due to the exponential tails
leaking probability to the classically forbidden regions.

2) find the regions where the particle cannot exist i.e. E < U . The the
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schroedinger equation changes sign and we get d2 /dx2 = ⇢2 ⇢2 = 2m(U �
E)/~ and the solutions are exponential decaying.

higher energy states see less of a potential barrier, so they extend further
into the forbidden region.

This leakage shifts the positions of the peaks in the allowed region towards the
forbidden region. its like the wavefunction relaxes a little into the classically
forbidden region. In the limit when En = U then the max/min in the allowed
regions are at x=0, L!! in e↵ect, when E ! U then all the particle energy
is potential rather than kinetic so its going VERY slowly and there is a high
probability to find the particle at this point.

8 1D finite well with unbound particles?

example we have a particle with energy E = 2U0 on the 1D finite well with
potential U0 for x < 0 and x > L, and U = 0 for 0 < x < L

we split up the region into the three sections

region 1 is x < 0 where U = U0 and E = 2U0

� ~2
2m

d2 

dx2
+ U = E 

d2 

dx2
= �2m(E � U)

~2  

d2 

dx2
= �k2

1 

and we will have the sine/cosine oscillating wave solutions  / sin k1x where
k2
1 = 2m(E � U0)/~2 = 2mUo/~2

in region 2 0 < x < L U = 0. the particle is still free so

d2 

dx2
= �2m(E � U0)

~2  
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d2 

dx2
= �k2

2 

but now k2
2 = 2m(E � U0)/~2 = 2m2U0/~2

so k2 =
p
2k1 so the wavelength changes at the well by �2 = 1/

p
2�1 which

makes sense as the particle has more kinetic energy in the well as it has
less potential energy so its moving faster, has more momenum so shorter
wavelength Its its moving faster, then we have less chance to find it at any
given point, so the amplitude will be lower.
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