
8.1 unbound particles are travelling waves

BUT These are not bound particles, these are free, so we really have to
consider the time dependence as well. and it gets a little more complicated.

so suppose it was a plane wave travelling from left to right. then in region 1
with x < 0 its

 (x, t) = Aei(k1x�!t) =  (x)T (t) = Aeik1xe�i!t

where eik1x is a wave with momentum p = ~k i.e. +ve momentum so its
travelling in the +ve x axis direction i.e. left to right.

It gets to the well, its wavelength (or wavenumber, k) changes in the well
to k2. Then it gets out of the well and its wavelength/wavenumber changes
back.

But this isn’t all that it going on - waves also REFLECT from boundaries,
so only part of the wave got transmitted across the well, and only part of it
got transmitted out of the well.

so if we were doing this properly we would have to consider reflected waves
as well. And reflected waves go the opposite way.

so in region 1 there is the original wave which goes from left to right, Aeik1x

but there is also some reflected wave which goes from right to left so Be�ik1x.

similarly in region 2 there is the transmitted wave AND a reflected wave
Ceik2x +De�ik2x

and its only in region 3 that there is ONLY a transmitted wave. Eeik1x

so at each boundary we match  (x) and d /dx and solve the resulting system
of equations!

In general, the faster the wave is travelling, the less the probability to find
it in any one place. and p = ~k so larger k means more momentum so lower
amplitude. But for travelling waves it gets complicated
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8.2 unbound 1D finite barrier - quantum tunnelling!

now lets switch so rather than being a finite well, we have a finite barrier.
so U = 0 for x < 0 and x > L and U = U0 for 0 < x < L the particle has
E < U0 so classically it cannot get through the barrier.

region 1: x < 0

 (x, t) = Aei(kx�!t) + Bei(kx+!t) for left (incomming plus reflection) with
k =

p
2mE/~

region 2: 0 < x < L This has E < U0 so this is exponetially decaying
barrier penetration  (x, t) = Ce⇢xe�iEt/~ + De�⇢xe�iEt/~ (reflection from
second barrier as well so can’t set either to zero) where ⇢ =

p
2m(U0 � E)/~

region 3: x > L after barrier there is only the transmitted wave  (x, t) =
Eei(kx�!t) where again k =

p
2mE/~

BUT WE HAD E < U0 so classically it cannot get through the

barrier. But our matter waves CAN get through the barrier!! this

is called quantum tunnelling

8.3 Nuclear fusion in the sun

Protons need to get within a distance of< 10�15 m for the strong nuclear force
to bind them together to form deuterium. The coulomb potential barrier
between two protons is e2/(4⇡✏0R = 2.3⇥ 10�13 J. so if typical temperature
has this energy then kT = 2.3⇥10�13 J and T = 1.6⇥1010 K or 1.4MeV. This
is WAY higher than the temperature of the sun, even in its centre (⇠ 107 K)

but we saw in thermodynamics that there is always a maxwell-boltzman
tail of particles with energies higher than the mean. so we’d be looking at
e�E/kT = e�1000 which is MUCH SMALLER THAN THE NUMBER OF
ATOMS IN THE SUN! so this doesn’t work!

Instead, we we incorporate the quantum tunnelling probability, then the
probability is significantly higher, and it can work! This is how the sun
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shines!

8.4 Radioactive decay

Radioactive decay is also a quantum tunnelling e↵ect. eg ↵ particle decays.
in large nuclei, the nucleons cluster together, into He nuclei since these are
extremely stable clusters. And for many heavy elements then these He nuclei
energies can be bigger than 0 so that it would be more stable to decay into
an element which is 4au smaller and 2 protons less charge. But the Coulomb
barrier is too high.... classically. but quantum mechanically then this can
happen!

9 More realistic potentials: Harmonic oscil-

lator

The simple harmonic oscillator gives us a simple potential which ! 1 at
x ! 1 which is smoothly varying.

U(x) = 1/2k0x2 as in a harmonic oscillator (calling it k0 so we don’t get
confused between this oscillator constant and wavenumber k).

we can now intuitively sketch the wavefunctions for this - the lowest energy
state will have the smallest classical extent, and a single peak in the centre
with exponetially decaying tails into the ’forbidden’ region defined by ±x
where Emin = U(x) = 1/2k0x2

� ~2
2m

d2 

dx2
+

1

2
k0x2 = E 

We can sketch the ground state - and in fact (after a lot of maths) we get
that its a gaussian!  (x) = Ce�a2x2/2.

This is an optional bit of maths where we can prove this, and find out what
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the energy is. so we put it in Schroedinger

� ~2
2m

d2 

dx2
+

1

2
k0x2 = E 

d2 

dx2
=

2m

~2 (
1

2
k0x2 � E) 

LHS d /dx = C(du/dx)deu/du where u = �1
2a

2x2 so du/dx = �1
2a

22x =

�a2x and d /dx = C(�a2x)e�a2x2/2

d2 

dx2
= C

d

dx
(�a2xe�a2x2/2) = Ce�a2x2/2[�a2 � a2x(�a2x)]

= C(a4x2 � a2)e�a2x2/2

RHS = C 2m
~2 (

1
2k

0x2 � E)e�a2x2

equate coe�cients of e�a2x2
and we get a2 = 2mE/~2 so E = ~2a2/(2m)

equate coe�cients of x2e�a2x2
and we get 1

2k
0 = a4~2/2m so a2 =

p
k0m/~

hence energy E = a2~2/(2m) =
p
k0m~2/(2m~) = 1

2~
p

k0/m = 1
2~! where

! =
p

k0/m is the classical result for the oscillation.

We saw when we looked at blackbody radiation that it worked if the electrons
in the metal walls were excited into SHM by the EM wave and had energies
which were quantised E = nhf = n~!

so we might expect that En = Emin + n~! where n � 1 (we can do a LOT
of maths to show that this is true!)

so we can COMBINE from n=0 (ground state) and get

En = 1
2~! + n~! = (n+ 1

2)~!

and we can sketch the wavefunctions corresponding to each one - see linked
animation
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The minimum energy of a classical SHM is zero - particle is at rest at the
equilibrium position. this is not possible in quantum mechanics because we
cannot be EXACTLY at x = 0, there is always some uncertainty �x�p �
~/2, and as the particle is not at x = 0 it must have some energy.

we can set KE = PE and classically the particle will go between x = A to
0 to �A with energy all as potential at x = A and all as kinetic at x = 0.

1

2
k0A2 =

1

2
~! =

p2

2m

so A2 = ~!/k0 = ~/
p
k0m and p2 = m~! = ~

p
k0m

so let �x ⇠ A/
p
2 and �p ⇠ p/

p
2 where the factors of

p
2 come from

looking at the rms. then we get

�x0�p =
⇣ ~p

2k0m

~
p
k0m

2

⌘1/2

= ~/2

and this is the absolute minimum according to the heisenburg uncertainty
principle.
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