
Introduction to modern physics: Special
Relativity

March 18, 2020

I’m Prof Chris Done and I get to teach you this section of the course termed
’modern physics’. I got really excited about teaching this course. It was
always my favourite bit of being an L1 tutor, that part where physics goes
strange! Up till now, what you’ve seen has been very much built with the
physical intuition you get from just looking at the world around you. But all
that hard won intuition is not going to help you here, where we extend into
the unfamiliar world - the world of the very fast which is special relativity,
and the world of the very small which is quantum mechanics. Its not that
your physical intution is wrong - it works great for the slow and macroscopic.
it just needs extending when we move to more extreme environments.

What I’m going to do in both sections of this course is take you through how
physics works in these more extreme environments. I’ll get you to build up
new physical intuition by doing problems, calculating what happens. Then
when you have some new feeling for how this works, I’ll talk about the
bigger picture, how to think like a relativist, how to think about a quantum
world. But we’ll get there via the maths, doing the calculations, and doing
some more calculations, so you get to build up experience of these unfamiliar
worlds.

Books, as ever in first year is Young and Freedman, website lecture notes as
ever are on duo.

1



1 Special Relativity (chapter 37 in YF)

The key thing in special relativity is knowing who is seeing what. Its all
about constructing a reference frame for the problem. We’ll do this first in
’standard’ classical mechanics - called Newtonian or Galilian, and then think
about how to change this once we start to think about travelling at speeds
close to the speed of light.

1.1 Reference frames in classical mechanics: YF37.1

We can set up a reference frame using a set of axes (usually cartesian). A
key concept is an inertial reference frame. In this frame an observer does
not experience any net forces - they are not accelerating. Inertial reference
frames move at constant velocity with respect to each other.

Quantities are observed differently in different inertial frames, but absolute
motion cannot be detected. They are absolutely equivalent. This is called the
’principle of relativity’. For example if two observers are in inertial frames S
and S’ where S’ moves with velocity u relative to someone in S, then someone
is S’ sees S move with velocity −u. and we can transform between events
with coordinates in S’ (x′(t′), y′(t′), z′(t′)) to coordinates in S (x(t), y(t), z(t)).
I’ve said t′ for symmetry but ’of course’ t′ = t in Newtonian Physics.

Note: prime does NOT mean derivative. It is common practice to use no-
tation such as S and S’ to denote different frames in relativity, so we will
always use df/dt for derivative rather than the shorthand f ′

Einstein’s Principle of Relativity says that once the laws of physics have been
established in one inertial frame, they can be applied without modification in
any other inertial frame. Both the mathematical form of the laws of physics
and the numerical values of basic physical constants that these laws contain
are the same in every inertial frame. So far as concerns the laws of physics,
all inertial frames are equivalent

But are they? There is already a really interesting point here. There is
no absolute frame of motion for reference IN EMPTY space. But space is

2



Figure 1:

NOT empty, it is filled with cosmic microwave background radiation. So we
CAN define a ’special’ inertial frame, one which is at rest compared to the
cosmic microwave background. And this can provide an absolute reference
frame for the universe, one I can agree on with someone on a planet round a
star in Andromeda. But its not special in any other way, its just the frame
comoving with the Big Bang expansion. And if I shield my spacecraft from
external radiation eg by making it metal so its a Faraday cage so I can’t see
the cosmic microwave background from inside - then there is no experiement
I can do where physics is any different.

Lets make things simple - lets have u point in the directon of the x−x′ axis,
only do things in 2D, and make the origins coincide at t = t′ = 0. An event
P in S’ has initial position x0′, y0′. If its stationary in S’ then an observer,
O’ at rest in S’, sees this at the constant position x′(t′) = x0′, y′(t′) = y0′

Another observer, O at rest in S, instead sees this moving and measures
coordinates

x(t) = x0′ + ut y(t) = y0′

This is the Newtonian/Galilean world we are used to.
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Suppose instead we’d got spacetime coordinates in S and wanted to figure
them out in S’. We just replace u with −u and primes with unprimes x′ =
x− ut, y′ = y, z′ = z and of course t′ = t.

We can use these Newtonian/Galilean coordinate transformations to trans-
form velocities between inertial frames. Suppose there is an object P which
is moving with velocity vx′, vy′ as measured by an observer at rest in S’. Now
lets work out what happens to its velocity as seen in S.

vx =
dx

dt
=
d(x′ + ut)

dt
= v′x + u

vy =
dy

dt
=
dy′

dt
= v′y

We can do acceleration also

ax =
dvx
dt

=
v′x + u

dt
=
dv′x
dt

= a′x

ay = a′y

Acceleration is the same even if velocity and position are not, so Newton’s
laws still work - F = ma = ma′.

Newton First law (inertia): if no external forces are acting then an object at
rest will remain at rest or if its moving it will continue to move with constant
velocity

Newton Second law (acceleration): when an external force acts upon an
object it will accelerate in proportion to the magnitude of the net forces and
in the direction of that force. The constant of proportionality is the mass so
~F = m~a.

Inertial reference frames are ones in which Newton’s first and second laws
apply. It follows that general conservation principles of momentum and en-
ergy also apply in inertial frames. Any inertial frame moving with constant
velocity with respect to another inertial frame is also an inertial frame.
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1.2 Approaching light speed

Now lets go faster - an observer sees a spacecraft move past at +1000 m/s.
The spacecraft sends out a probe whose speed is 2000 m/s relative to the
spacecraft.

We set up the frames so that the spacecraft is in S’, where it is at rest. The
probe has velocity 2000 m/s relative to the spacecraft so is in this S’ frame
with velocity v′x = 2000 m/s. The spacecraft frame S’ moves with velocity
u = 1000 m/s relative to an observer O in S.

With Galilean transforms, the observer in S sees the probe as moving at
vx = v′x + u = 3000 m/s.

Instead of launching a probe, the spacecraft turns on a searchlight which
travels at speed c relative to the spacecraft. Classical mechanics says the
observer in S should see this at speed vx = c + u > c. Maxwells equations
says it travels at c.

So something doesn’t work. Either there is such a thing as a special inertial
reference frame in which Maxwells equations work. Perhaps space is filled
with something - an aether - in which electromagnetic waves propagate? Or
maybe velocities don’t add up the way they should in classical physics. but
velocity = distance/time so either distance or time (or both) would have to
go very strange!

One way to test this is to look. The Michelson-Morely experiment took the
idea of an aether and figured out that the motion of the Earth means that
an experiment would move with respect to this aether. so we could detect
motion relative to the frame of the aether by looking at the speed of light.
This would mean that the laws of physics were NOT the same in all inertial
frames, but that there was a special frame for electromagnetism, the frame
of the aether.

They measured this with an interferometer, with axes at 90 degrees. The
Earth moving with respect to the aether during a year means that they
should see a shift in the interference pattern due to the changing speed of
light when they rotated it with respect to the aether. They didn’t.
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1.3 Postulates of special relativity YF37.2-37.3

we saw last lecture that there is no aether/special inertial frame for light.
Maxwell is right, light ALWAYS travels at speed c no matter what frame we
are in. Its classical physics which is wrong. velocities close to the speed of
light DO NOT ADD in the ’standard’ Galiean way.

Einstein’s reaction to the failure to detect an ’aether’ was radical. He em-
braced it wholeheartedly!

Einstein 1: the laws of physics are the same in every inertial frame of reference
(this is in the spirit of Newtonian physics, as we saw from last lecture)

Einstein 2: the speed of light in a vacuum is the same in all inertial frames of
reference and is independent of the motion of the source (this takes Maxwells
equations at their word! so in some sense we didn’t need to say it as its just
a specific case of a law of physics in the 1st postulate - but its good just to
be explicit because the implications are profound.)

We saw last lecture that the speed of light being constant means that the
’obvious’ way in classical mechanics to transform velocties between inertial
frames is not correct. Velocity is distance/time so we have to change our
definitions of either distance or time or both (its both!)

1.4 light as the ultimate speed limit

The first thing that this tells us is that the speed of light is an ultimate speed
limit, that no inertial observer can travel at c. we can see this most easily
by doing a thought experiment. Suppose a spacecraft at rest in S’ moves
with velocity u = c relative to S, and then turns its headlights on. In S, the
headlight must travel at c. but so does the spacecraft, so the light is always
in the same place as the spacecraft. Yet in the spacecraft in S’ they have
to see it move away from the spacecraft at c, so they cannot be at the same
point in spacetime. As a 16 year old Einstein wondered what he would see
if he were travelling at c - but the answer is you can’t.
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1.5 Simulteneity

A more subtle and disturbing effect of the speed of light being constant in
all frames is that events that are simultaneous for one observer need not be
simultaneous for another.

Suppose we have multiple lightning strikes as in example YF37.5. Lightning
strikes points A’ and B’ at the back and front of a train carriage and they also
burn the ground at A and B. There are two observers, one on the ground,
equidistant between A and B and one in the train, equidistant between A’
and B’.

These strikes happen simultaneously simultaneously as seen from the ob-
server outside the train.

But the observer in the train is travelling forward. so sees the light from B’
before the light from A’. But they know they are equidistant between A’ and
B’, and that light always travels at c. In which case, if A’ arrives first then
it must have happened first.

Two observers do not need to agree on the order of events which occur at
different positions.

A key point here is that SIMULTENEITY is not the same as CAUSALITY.
The lightning strike at the front does not cause the lighting strike at the
back, so the order in which they happen is not really important. its just a
shift in viewpoint.

Its like whether I see a firework explode exactly along my line of sight to the
top of the eifel tower - if I was standing somewhere different I’d see it explode
to the right or left of the tower. Only if the firework was ATTACHED to the
tower would every observer position agrees that it explodes exactly in line
with the tower.

whether two events separated in space are simultaneous depends on the mo-
tion of the observer. Simulteneity is not an absolute concept (though causal-
ity is)

But this means that the time interval between two events is different in
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Figure 2:
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Figure 3:

different frames.

1.6 Relativity of time intervals - time dilation

We have observers in frame S, and S’. S’ moves with velocity u relative to S,
along the x-x’ direction and their axes O and O’ align at t=t’=0.

In S’ a beam of light goes vertically upwards from the origin O’ and reflects
back vertically downwards from a mirror after vertical distance d as measured
in S’. In S’ the time this takes is ∆t′ = 2d/c

In S, the light path is not vertical, but moves horizontally by u∆t as well
as vertically. so then the path length up to the mirror is ` where `2 =
d2 + (u∆t/2)2, and the total path length is 2`.

Because light always travels at c this means the time interval measured by
someone outside the carriage for the light to get back to the emitter is

∆t = 2`/c =
2

c

√
d2 +

(u∆t

2

)2
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square this and get

∆t2 =
4

c2

[
d2 +

u2∆t2

4

]
=

4d2

c2
+
u2

c2
∆t2

but ∆t′ = 2d/c and β = u/c then ∆t2 = (∆t′)2 + β2∆t2 and hence

∆t =
∆t′√
1− β2

=
∆t′√

1− u2/c2

since (u/c)2 < 1 then ∆t > ∆t′. The time for the light pulse to go up and
down is longer in S than in S’.

Time intervals are measured by clocks. So ’ticks’ on a clock as measured in
a frame in which the clock is at rest are shorter than those measured in a
frame which moves relative to the clock. If you see the clock move, then a
clock in your frame measures slower time intervals than the clock in frame
moving relative to you. Fast clocks run slow.

The size of this effect is very small in normal life. e.g. d = 1.5m and
u = 300m/s (a plane) then ∆t′ = 2d/c = 10−8s inside the plane, whereas
someone on the ground measures ∆t = γ(u)∆t′

u/c = β � 1 so we can use the approximation (1 + x)n = 1 + nx+ . . . where
γ = (1 − β2)−1/2 so x = −β2 and n = −1/2 so γ ≈ 1 + (−β2)(−1/2) =
1 + β2/2 = 1 + (300/3× 108)2/2 = 1 + 10−12/2. Thus ∆t = (1 + 10−12/2)∆t′

and so the fractional difference in times measured is tiny at

(∆t−∆t′)/∆t′ = 10−12/2

But now take u = 0.99c then γ = 7.1 and ∆t = 7.1∆t′ and the fractional
change is 6.1, or for u = 0.9999c, where γ = 70.7 the fractional change is
∼ 70. γ(u) asymptotes to ∞ as u→ c.

1.6.1 Proper time

There is only one inertial frame in which we are in the same frame as an
event, but infinitely many which are moving relative to it. So time intervals
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Figure 4:

11



measured in the same frame as the event have a more fundamental quality
than those in any other frame. We use the term proper time, T0, to describe
the time interval between 2 events which occur at the same point.

(CAUTION: in the standard setup of S and S ′, proper time is measured in
S ′ - so you might expect it to be primed, but by convention it does not)

Proper time is always the shortest, all other frames, S, see S ′ move with
velocity u so they measure time intervals which are longer by a factor γ(u)

1.6.2 Example

e.g. example YF37.1 high energy particles from space interact with atoms
in the earths upper atmosphere to produce muons. These decay in their rest
frame with lifetime ∆t′ = 2.2× 10−6 s.

if the muon is moving with respect to the Earth with u = 0.99c then what is
its mean lifetime as measured on earth?

γ = 1/
√

1− β2 = (1− 0.992)−1/2 = 7.09 so ∆t = 7.09×∆t′ = 1.56× 10−5 s.

Their half life is 7x longer as seen on Earth (a frame in which the muon
moves with speed u = 0.99c) than experienced in the rest frame of the muon.
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1.6.3 Example

Things can get tricky. but generally only because they are described in a
confusing way.

Example YF 37.3. A spacecraft with traveller (Mavis) zips past an observer
(Stanley) on Earth at u = 0.6c. As they pass they both set their clocks to
zero. A short time later stanley measures mavis passes a spacestation at a
distance stanley measures to be 9× 107 m away.

What does stanley;s timer read as mavis passes the space station

what does Mavis’s timer read as they pass the space station

The standard axes setup is to put the spacecraft observer/mavis/O’ in frame
S’ and the earth observer/stanley/O in frame S. Set t′ = t = 0 = x = x′

when the observers pass ie when O′ = O

Stanley measures distance of 9× 107 m away and a speed of u = 0.6c so this
takes ∆t = `/u = 9× 107/(0.6× 3× 108) = 0.5 s

In S’ these events happen at the same point in space which is their own
position - first they line up with O and then they line up with the space
station. So O’ (mavis) is at rest so measures the proper time, which is always
the SHORTEST possible time interval. so we need ∆t′ = ∆t/γ = 0.4 s

Now it gets more confusing. Stanley blinks as Mavis flys past. Mavis mea-
sures the blink to take 0.4 s. How long does Stanley think this takes?

its very tempting to say 0.5 s but this is NOT correct because its a DIFFER-
ENT pair of events. Now its STANLEY who is at rest with respect to the
two events (time taken for Stanley’s eyelid to go down and up).

So we should relabel the frames. STANLEY is now in the frame S’ in which
the event is at rest. and MAVIS is in S which is moving relative to S’
with velocity −u. but time dilation depends only on u2 so direction doesn’t
matter. so then STANLEY is in S’ so ∆t′ = ∆t/γ = 0.4/1.25 = 0.32 s.

This gets us nicely back to our original discussion of simulteneity. Mavis
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passes the space station after 0.4 s, and sees Stanley finishing his blink. Yet
to Stanley, he thinks his blink ends after 0.32 s, way before mavis passes the
space station at 0.5 s.

But these events are not causally related so the order in which we see them
is not important.

1.6.4 Twin paradox

But surely we can make this causal. Take twins eartha and astrid. Astrid
flys away from earth at high speed u, so all time intervals in her rest frame
are shortest - including heartbeats! so she ages more slowly than eartha.

But since sign doesn’t matter she can turn around and come back at the
same speed and still age less. but then she can meet up with her twin and
then Astrid is younger than Eartha.

But all inertial frames are relative so surely Eartha could say the same - that
she has gone away from astrid at −u and then turned around and met up
with her. so Eartha should be younger!

Who is correct? when they meet they should be able to tell who is actually
younger!

In fact its astrid. The key is that these frames are not symmetric. Astrid
has swapped inertial frames whereas Eartha has always been in the same
one (its easier to think of it this way than to get tangled with accelera-
tion/deceleration). Astrid is indeed younger, though its clearer to see this
by folding in what is happening to space as well as to time.

1.7 Relativity of length

Speed=distance/time. and we’ve seen that time intervals have distorted
because of the fixed speed of light. Now we will see that length does as well.

We measure can length of an object like a car by making marks on a sta-
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tionary (relative to the car) pavement at the front and back of the car and
measuring between them.

If instead the car is moving with respect to the road then we have to make the
marks simultaneously to get the true length of the car - if instead we marked
the position of the back of the car a bit later than when we measured the
front hen we could get negative length as the back is now further forward
than the front was when we measured it.

But then length involves marking simultenously the front and back - so we
are back into the issue we had where simultaneous is a frame dependent
concept (though causality isn’t).

1.8 Lengths parallel to motion

Set up our standard frames S and S’, so S’ is moving with velocity u wrt S.
Put a ruler in S’, and measure its length in this rest frame as `′. Attach a
light to one end, and a mirror to the other. The total distance is go along
the ruler and back to the same point is 2`′ in the rest frame of the ruler,
and the time interval (proper time as its all in the rest frame of the ruler)
between the light signal starting and being recieved is ∆t′ = ∆t′1 + ∆t′2. In
the rest frame, ∆t′1 = ∆t′2 as the light trip is symmetric there and back so
c = 2`′/∆t′

In frame S we know that the total length that the light has to travel is the
length of the ruler in this frame, which is ` plus the frame shift. The length
to the mirror is then `1 = ` + u∆t1 and it goes at the speed of light so
c = `1/∆t1 so c∆t1 = `+ u∆t1 and c∆t1 = `/(c− u)

On the way back we have `2 = `− u∆t2 and c = `2/∆t2 so c∆t2 = `− u∆t2
so c∆t2 = `/(c+ u)

The total time measured in S is ∆t = ∆t1 + ∆t2

∆t =
`

c− u
+

`

c+ u
=

2`/c

1− u2/c2
= γ22`/c
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Figure 5:

We also know how the time intervals change from one frame to another
∆t = γ∆t′

Substitute in and get γ∆t′ = γ22`/c so ∆t′ = γ2`/c

In the rest frame we had that ∆t′ = 2`′/c so we equate and so 2`′/c = γ2`/c
which gives us ` = `′/γ.

Since γ(u) ≥ 1 then the lengths measured in the moving frame are smaller
than lengths measured in the rest frame. This is length contraction. It is
real, not an optical illusion, in the same way that time dilation is real - we
really age less quickly if we move fast - and we really take up less space if we
move fast.

When u � c then ` ∼ `′ and we are back to classical mechanics. However,
when u→ c then `� `′

We call `′ - length measured in the rest frame of the - PROPER DISTANCE
`0 (again beware the lack of primes but it is measured in the primed frame) -
in the same way that time intervals measured at a single point are PROPER
TIME
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Example FY37.4 A spacecraft flies past the earth at a speed of 0.99c. A
crew member on board the spacecraft measues its length to be 400m. What
length do observers on earth measure?

S’ is the frame of the spacecraft. `′ = `0 = 400 m is proper length.

S is earth frame, so ` = `′/γ and γ = 1/
√

1− 0.992 = 7.09 so ` = 400/7.09 =
56.4 m

Example YF37.5. (continuing from above) Suppose 2 observers on Earth are
56.4 m apart. How far apart does the spacecraft crew measure them to be?

This is a DIFFERENT EVENT so change frames. Now the EARTH is the
rest frame so call it S’, and the spacecraft is the new frame, S, that we want to
consider. They still have relative velocity u so gamma = 7.09 again. But now
we are looking at distance in S which is the SPACECRAFT frame relating
to a proper distance `′ measured in a rest frame so ` = `′/γ = 56.4/7.09 so
` = 7.96 m

THIS IS NOT THE PROPER LENGTH OF THE SPACECRAFT. As mea-
sured on earth it is the length of the spacecraft when the nose and tail are
simultaneously measured. In the spacecraft frame these two positions are
only 7.96m apart and the nose is 400m in front of the tail. The nose passes
O2 before the tail passes O1.

1.8.1 lengths perpendicular to motion

Actually we have already assumed that this didn’t change in our discussion
of the time transformations! But this should be as at t = t′ = 0 then the
base of the ruler coincided with the x-x’ origin. but it lies directly on the
y-y’ axis. so this lines up at t = t′ = 0.
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1.9 Lorentz transformations

Figure 6:

We have an event at point P which is
x, y, z, t in frame S and x′, y′, z′, t′ in
frame S’. who do we relate these co-
ordinates to each other if the origins
O − O′ are co-incident at t = t′ = 0
where S’ moves relative to S in the
+ve x direction at speed u.

Lets make it more clear. The dis-
tance O’ to P is x′ = L′ is proper
distance in S’ This will be seen in S
as length contracted to L = L′/γ =
x′/γ

hence the distance O to P as mea-
sured in S is the speed of the frame
plus the length contracted distance
measured in S i.e.

x = ut+ L = ut+ x′/γ

solve for x′ and get

x′ = γ(x− ut)

and then we can just write down
what happens for S’ to S (swap u
for -u and primes for unprimes but
REMEMBER time

so start at the same place as before
but swap to get x′ = −ut′ + x/γ

so we have two equations for x′ so we can eliminate and solve to get how t
relates to t′
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−ut′ + x/γ = γx− γut

−γut′ + x = γ2x− γ2ut

γut′ = x(1− γ2) + γ2ut

but we have 1− γ2 = 1− 1/(1− β2) = (1− β2 − 1)/(1− β2) = −β2γ2 so

γut′ = γ2ut− β2γ2x

t′ = γ(t− xu/c2)

bring everything together and we have the Lorentz transformations

x′ = γ(x− ut) y′ = y z′ = z t′ = γ(t− xu/c2)

or we can write these for quantities in S given those in S’ as (replace −u or
u and swap primed/unprimed)

x = γ(x′ + ut′) y = y′ z = z′ t = γ(t′ + x′u/c2)

For values of u� c then γ(u)→ 1 and we get back to the galilean transfor-
mations of classical mechanics. but for u → c then space and time become
intertwined and we can no longer say that they are absolutes independent
of the frame of reference. The only SPECIAL frame of reference is the rest
frame.

the combination x, y, z, t is called the spacetime coordinates of an event as
measured in S. They relate to spacetime coordinates in frame S’ via these
transformations.
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Example YF37.6. Mavis pilots her spacecraft across a finish line at 0.6c
relative to the line, winning the race. (event 1). According to her, at the
same instant as she, at the front of the ship, sees herself crossing the line, a
’hooray’ message is sent from the back of the ship (event 2). She measures
the length of her ship to be 300m. Stanley is at the finish line, and is at rest
relative to it. When and where does he measure events 1 and 2

Set up axes in the standard way. Mavis is in S’ as here she is at rest relative
to the ship. let the origins coincide at t = t′ = 0 when Mavis crosses the
line. Then event 1 in S’ is at x′1, y

′
1, z
′
1, t
′
1 = 0, 0, 0, 0 and event 2 in S’ is at

−300, 0, 0, 0 as the events are simultaneous in this frame and the ships length
is 300m in this frame.

First task is always calculate γ for the problem. γ = 1/
√

1− β2 = 1/
√

(1−
0.62) = 1.25

In S event 1 is at x1 = γ(x′1 + ut1) = 0 and t1 = t′1 = 0

In S, event 2 is as x2 = γ(x′2 + ut2) = 1.25×−300 = −375 m and is seen at
time t2 = γ(t′2 +x′2u/c

2) = 1.25× (0−300×0.6/c = −225/c = −7.5×10−7 s

And here its negative, so in S, the hooray message comes 0.75µs BEFORE
SHE HAS WON!

But its not violating causality because the signal from the back of the space-
craft was not triggered by Mavis. It was an unconnected event.

If instead, Mavis sends a signal to the back of the spacecraft to trigger the
’hurray’ then it adds an extra light travel time of 300/c = 1 × 10−6s to get
from the front to the back of the spacecraft. Hence event 2 in her frame, S’,
has coordinates −300, 0, 0, 10−6

Stanley then measures this new (causal) event 2 happening at time t2 =
γ(t′2 + x′2u/c

2) = 1.25× (10−6 − 300× 0.6/c) = 5× 10−7 s

This is now positive, so causality is actually preserved!

Causality is what we care about because its about a physical connection.
Simulteneity is just a question of the observers point of view - observers can
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disagree about whether an object behind me is seen directly in line with
me or projected to my left or my right. its not an important difference,
everyones view is ’correct’. but if I am HOLDING the object (so I can affect
it physically) then all observers agree that its in line with me.

1.10 Lorentz velocity transformations

We had the Lorentz transformations between coordinates

x′ = γ(x− ut) y′ = y z′ = z t′ = γ(t− xu/c2)

but we can re-write them considering only a small displacement dx, dy, dz, dt
and get

dx′ = γ(dx− udt) dy′ = dy dz′ = dz dt′ = γ(dt− dxu/c2)

dx′/dt′ = γ(dx− udt)/γ(dt− dxu/c2)

=
dx/dt− u

1− dx/dtu/c2

v′x =
vx − u

1− vxu/c2

This has some interesting properties! when u, vx � c then v′x → vx − u as
expected. but when we go to vx → c then v′x → c also - lets see this explicitly
by setting vx = c

v′x =
c− u

1− cu/c2
= c

c− u
c− u

= c

Anything moving with velocity→ c in S also has velocity v′x → c in S’ despite
the relative notion of the two frames. The speed of light is the same in any
frame (by construction)

We get the inverse transforms as ever by swapping primes and unprimes and
−u for u.

vx =
v′x + u

1 + uv′x/c
2
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Figure 7:

Example YF37.7 spacecraft moving away from earth at 0.9c fires robot space
probe in same direction as its motion at 0.7c as seen from the spacecraft.
What is the velocity as seen from the Earth?

Set up the frames. The spacecraft is S’, and its velocity relative to earth, S,
is u = 0.9c.

The robot probe has v′x = 0.7c - its relative to the spacecraft so its in S’

This would be seen in S as vx = 0.7c+0.9c
1+0.7×0.9 = 0.982c

A scoutship is sent from Earth at 0.95c to try to catch up with the spacecraft.
What is the speed of the spacecraft with respect to the scout?

We know the scout ship in the Earth frame S has velocity 0.95c while the
spacecraft has 0.9c. So the scout is catching up with the spacecraft. We want
to measure the scout speed from the spacecraft so the spacecraft should be
the one at rest, so u = 0.9c

Their relative velocity in frame S’ is

v′x =
vx − u

1− uvx/c2
= c

0.95− 0.9

1− 0.9× 0.95
= 0.345c

What is the speed of the probe relative to the scout?
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We know that the probe is moving at velocity 0.982c in the Earth frame.
While the scout has 0.95c in this frame so the scout will be falling behind.
So make S’ be the probe rest frame so u = 0.982c

v′x =
vx − u

1− uvx/c2
= c

0.95− 0.982

1− 0.95× 0.982
= −0.477c

1.11 velocity transformations in orthoganal directions

While the coordinates transformation y− y′ and z − z′ are not affected by a
velocity boost on the x-axis, this is not true for vy − v′y and vz − v′z. This is
because time dilation affects motion along all axes.

x′ = γ(x− ut) y′ = y z′ = z t′ = γ(t− xu/c2)
but we can re-write them considering only a small displacement dx, dy, dz, dt
and get

dx′ = γ(dx− udt) dy′ = dy dz′ = dz dt′ = γ(dt− dxu/c2)

v′y = dy′/dt′ =
dy

γ(dt− dxu/c2)
=

dy/dt

γ(1− dx/dtu/c2)
=

vy
γ(1− vxu/c2)

v′y 6= vy! because even though dy′ = dy, dt′ 6= dt - its the time change
between frames which leads to a velocity change!

1.12 Doppler Effect

We could do this by considering lengths and times as in the book. Or we
could just do the transformations! Suppose we have an electromagnetic wave.
E ′(x′, t′) = A cos(k′x′−ω′t′) and we know that this travels at c = ω′/k′ = f ′λ′

now do the transformation to frame S:
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E(x, t) ∝ cos[k′γ(x− ut)− ω′γ(t− ux/c2)]

= cos[γ(k′ + ω′u/c2)x− γ(ω′ + uk′)t]

but c = ω′/k′ so ck′ = ω′ and we have

= cos[γ(k′ + k′u/c)x− γ(ω′ + uω′/c)t]

= cos[γ(1 + u/c)k′x− γ(1 + u/c)ω′t] = cos(kx− ωt) where we have k and ω
in the S frame. these relate to k′ and ω′ via the factor

γ(1 + u/c) =
1 + u/c√
1− u2/c2

=
1 + u/c√

(1− u/c)(1 + u/c)
=

√
1− u/c
1 + u/c

so we have

ω =

√
1− u/c
1 + u/c

ω′ k = k′

√
1− u/c
1 + u/c

and c = ω′/k′ = ω/k = (2πf)(λ/2π) = fλ. The wavelength gets longer
(frequency gets lower) when its moving away (+u) and shorter (higher fre-
quency) when its moving towards you (-u). But its NOT just a simple γ
factor as lengths contract, changing the wavelength as well as time dilating,
changing the frequency.

2 Relativisitic kinematics

This all has implications for how we do kinematics, how we define momentum,
energy, force - just about everything changes now as u→ c.

One of the key assumptions (postulates) was that physical laws are the same
in all inertial frames, but our Lorentz velocity transformations are very dif-
ferent to those in classical mechanics for speeds close to the speed of light,
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because there is now an ultimate speed limit. e.g if we have a constant accel-
eration, a, then classically we have v = u+ at so the speed increases linearly
with time WITHOUT limit.

Classical momentum is p = mv so this likewise increases linearly, and KE =
mv2/2 = p2/2m increases quadratically. But after some time v → c so our
classical definitions of momentum and KE likewise tend to a constant. Yet we
are still pouring energy in to accelerate the particle. So what has happened
to physical laws of conservation of energy and momentum! how do we make
these look the same in all inertial frames?

2.1 Relativisitic momentum

Set up some collisions and analyse them to see that the velocity transforma-
tions imply that momentum is not as in classical mechanics ~p = m~v but is
instead ~p = γ(v)m~v where m is proper (or rest) mass of a particle measured
in its rest frame and γ(v) = (1− v2/c2)−1/2 and v = |~v|.

Example: an oil tanker of mass 100kT is travelling at 0.3 m/s. how fast must
a 1g hummingbird fly to have the same momentum

The tanker is going very slowly so we can use Newtonian expressions ptanker ≈
mv = 100× 106 × 0.3 = 3× 107 kg m/s

What about the bird - if we used newtonian we’d get (mv)bird = (mv)tanker
so vbird = vtankermtanker/mbird = 0.3× 108/10−3 = 3× 1010 = 100c!!!

This shows us we need to use the relativisitic expression pbird = γ(v)mv =
mβc/

√
1− β2 = 3× 107

β/
√

1− β2 = 0.1/1e− 3 = 100 and β2 = 104/(104 + 1) so β = 0.99995c

Example: At what speed does the Newtonian expression for momentum give
an error of 5%

The difference between Newtonian and relativistic p is γ so when γ = 1.05
we get a 5% difference in momentum
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Figure 8:

1/
√

1− β2 = 1.05 so β2 = 1− 1/1.052 = 0.0929 so β = 0.30c

26



2.2 Relativistic Force

Now we have momentum defined properly we are good to go. We can get
directly to force via the old classical mechanics ~F = d~p/dt = d/dt[γ(v)m~v]
(where time is measured in the same frame as momentum is measured).

Special relativity can handle accelerations even though its set up for inertial
frames. We can always define an instantaneous inertial frame, so accelerating
objects moves in continuous fashion from one instantaneous inertial frame to
another.

Suppose ~F and ~v are both along the x-axis so the force is accelerating the
particle along the direction of motion, increasing its velocity along the x-axis.

Fx =
dγ

dt
mvx + γm

dvx
dt

= mv
d

dt

1

(1− v2x/c2)1/2
+ γmax

we need to chain rule, and do a lot of algebra (or type into mathematica) to
get Fx = γ3max

if instead ~F and ~v are perpendicular then we get something different. ~F acts
perpendicular to ~v so causes the particle to go round in a circle rather than
increasing its velocity. so v is constant in magnitude, so dγ/dt = 0. then we

get ~F = γm~a.

example YF37.9 An electron (mass 9.11e-31kg and charge -1.6e-19C) is mov-
ing opposte to an electric field of magnitude E = 5 × 105 N/C. Find the
magnitude of momentum and acceleration at the point when v = 0.01c, 0.9c
and 0.99c.

p = γmv so the different v’s imply different γ’s of 1.0005, 2.29 and 7.09.
hence these velocities have momenta 2.73× 10−23, 5.64× 10−22, 1.92× 10−21

kg/m/s

acceleration - this is acting in the same direction as the velocity (opposite
but changing velocity so we have to consider the dγ/dt term. so then we are
using F = γ3m~a and the force is given by the field |F | = |q|E = 8 × 10−14

N. Hence acceleration |a| = F/(γ3m) so for each velcoity this is |a| = 8.8 ×
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Figure 9: A constant force gives constant acceleration in the Newtonian limit
as F = ma. But with relativity then if the force is parallel to the direction
of motion you get the red line, where a ∝ γ−3 whereas if its perpendicular
you get the green line, with a ∝ γ−1.

1016, 7.3×1015, 2.5×1014 m/s/s so we can see that the same force does NOT
give rise to the same acceleration - which is as expected as we can’t go faster
than c!

This was all in the lab frame - where the force is constant. if we swap frames
and sit on the electron instead then the force isn’t constant!!

And if instead this force had been perpendicular to the velocity we would
see no change in speed, but there is an acceleration which changes direction.
now its |a| = F/(γm) so its 8.8× 1016, 3.8× 1016, 1.2× 1016 m/s/s.

2.3 Relativisitic energy

So now lets try to get to an understanding of energy in a relativisitc context.
We know that energy is force times distance, so when we are accelerating
from rest with the force in the same direction as the direction of motion then
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the work done in going from 0 to some distance x is

W =

∫ x

0

Fdx =

∫ x

0

mγ3adx

We can break this up as axdx = dvx/dtdx = dvxdx/dt = vxdvx

W =

∫ x

0

mγ3adx =

∫ v

0

mγ3vxdvx = m

∫ v

0

vx
(1− v2x/c2)3/2

dvx

assuming that we start at from rest at x = 0.

lets do a subsitution with α = 1 − v2x/c2 to make this integral nicer. then
differentiate to get dα = −2vxdvx/c

2 so vxdvx = −1
2
c2dα. We have to re-

member to change the integral limits as well, so the lower limit is vx = 0
which gives α = 1, while the upper limit is whatever α corresponds to the
end velocity we accelerate too. Hence

W = −m
2

∫ α

1

c2α−3/2dα

=
−mc2

2

[α−1/2
−1/2

]α
1

= mc2(α−1/2 − 1) = mc2
( 1

(1− v2/c2)1/2
− 1
)

= mc2(γ − 1)

The relativisitic kinetic energy required to accelerate something from rest
to velocity v is K = mc2(γ − 1). Lets look at this in the limits - when
the particle is a rest we get KE=0 as expected. then for v � c we get an
expansion

(γ − 1) = (1− β2)−1/2 − 1 = 1 + (−1/2)(−β2) . . .− 1 = v2/(2c2)

so then K ≈ mc2v2/(2c2) = 1/2mv2 which is the classical value. But as
v → c then the relativistic and classical KE diverge. relativisitic kinetic
energy is properly given as (γ − 1)mc2 - but this is the difference between
two terms, γmc2 − mc2. The second term exists even when the particle is
at rest. This is the rest energy of the particle. We can define total energy
E = K +mc2 = γmc2

So we can accelerate and accelerate and the KE goes up and up. but the
speed cannot go faster than the speed of light.
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Figure 10:

2.4 Relation between momentum and energy

In the same way that classical KE and momentum can be related via KE =
p2/2m we can particle energy and momentum in relativisitic mechanics as

E = γmc2 and p = γmv

re-write these as E/mc2 = γ = (1− β2)−1/2 so (E/mc2)2 = 1/(1− β2) while
p/mc = γβ so (p/mc)2 = γ2β2

( E

mc2

)2
−
( p

mc

)2
=

1

1− β2
− β2

1− β2
=

1− β2

1− β2
= 1

E2 − p2m2c4/(m2c2) = m2c4

E2 − p2c2 = m2c4 or E2 = (pc)2 + (mc2)2

This implies that a particle with no rest mass can still have energy and
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momentum - these are photons where E = pc.

2.5 Rest mass energy

E = K+mc2 = γmc2 so even if the particle is at rest it has energy E = mc2

this is energy associated with rest mass rather than with energy of motion

There is clear experiemntal evidence for this

example: Nuclear fusion

1

1
1H +

7

3
Li→ 4

2
2He+

4

2
He

these have atomic masses of 1
1
H = 1.007825, 7

3
Li = 7.016005 so total before

is 8.023830u

4
2
He = 4.002603 so total after is 8.005206.

We LOST some mass. so we must have GAINED some energy. The energy
gained (to KE or the particles) is a net heat of ∆Q = 0.018624uc2 where
u ≈ mp.

total energy is ∼ 8uc2 so gain in energy is ∆Q/Q = 0.018624/8 = 0.002
i.e. 0.2% of the rest mass energy can be converted to kinetic energy in this
reaction. This doesn’t sound a lot, but it is actually! Its not far from the
most efficience fusion process, which is

1

1
H +

1

1
H +

1

1
H +

1

1
H → 4

2
He

mass before 4 × 1.007825 =, afterwards 4.002603. so ∆Q = 0.0286uc2 and
∆Q/Q = 0.007

This is the reaction which powers the Sun and (most of) the stars we see in
the night sky.
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MASS NEED NOT BE CONSERVED IN COLLISIONS. The thing we care
about is total energy.

example: Neutral pions are unstable particles. they decay to PHOTONS.
π0 → γ + γ

What is the energy of the photons in the rest frame of the pion?

initial Eπ = mc2 and pπ = 0 as it is at rest

final E = E1 + E2 = hν1 + hν2 and |p1| = E1/c and |p2| = E2/c.

conserve momentum and we need p1 = −p2 so E1 = E2 - there are two
identical photons going in opposite directions,

conserve energy E = 2hν and so 2hν = mπc
2

2.6 relativisic collisions and kinematics

We are going to limit ourselves to 1D motion for particles as we’ve only
really done relativity in 1D. we are going to remember that we don’t need to
conserve mass.

Example: π0 production: YF example 37.11

Two protons, each with mass 1.67×10−27 kg are initially moving in opposite
directions. They continue to exist after a head on collisions that produces
a neutral pion of mass 2.4 × 10−28 kg. If all particles are at rest after the
collision, what is the initial speed of the protons.

momentum before is zero as the particles have same speed but opposite
direction.

total energy is conserved. each initial proton has rest energy and kinetic so
E1 = E2 = γ(u)mpc

2

all particles are at rest afterwards, so only rest mass energy.
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Figure 11: Pion production

2γp(u)mpc
2 = 2mpc

2 +mπc
2

γ(u) = (2mp +mπ)/(2mp) = 1 +mπ/(2mp) = 1.072

γ = (1− β2)−1/2 so β2 = (γ2 − 1)/γ2 and β = 0.36

Example - kaon production! (its a problem in YF37, number is 69 in my
version.

some of the incident KE is used to create rest mass energy of the new particles
so this is NOT an elastic collision! and it won’t conserve mass either!

p+ p→ p+ p+K+ +K−

The rest energy of each Kaon is 493.7MeV, the proton is 938.3MeV.

Calculate the minimum kinetic energy for proton 1 which allows this to occur
if proton 2 is initially at rest.

This is much easier to do in the centre of mass frame as here the 2 protons
have equal and opposite (unknown) velocities of u and −u and EVERY-
THING is at rest afterwards.

Conserve energy: before collision γ(u)mpc
2 + γ(−u)mpc

2 = 2γ(u)mpc
2

After collision, everything is at rest for a minimum energy collision so 2mpc
2+
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2mKc
2.

Equate and solve for γ(u) = γ(−u) and get

γ(u) = 1 + mK/mp = 1 + 493.7/938.3 = 1.53 so 1 − β2 = 1/1.532 and
β = 0.76.

Now we need to transform this to a velocity on one of the protons, so its at
rest with respect to the other one.

Pick the one moving to the right, make this S’ so we have our standard setup
for u = +0.76c. in our central frame, we had vx = 0.76c for the particle on
the left, and vx = −0.76c for the particle on the right.

transform to the primed frame, so we see what the stationary particle sees

particle on the left:

v′x =
vx − u

1− vxu/c2
= 0

this is as expected as we wanted to be in the rest frame of the particles on
the left!

particle on the right - this is what we want!

v′x =
vx − u

1− vxu/c2
= −0.76c−0.76c/(1−(−0.76c)(0.76c)/c2 = −1.51/1+0.57 = −0.96c

so the particle on the right has very high velocity in the rest frame of the
particle on the left. its kinetic energy (γ − 1)mpc

2 = (3.68 − 1)mpc
2 =

2.68.3938MeV c2 = 2515MeV This is much more than the rest mass energy
needed to produce the kaons, as in this frame the second proton is moving
after the collision.
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3 How to think about relativity

Most of this material is now in the new section of FoP1, on Collisions, Con-
servation and Fields. But I’ve put it here explicitly as there are some very
nice results which also help us understand what special relativity is (and is
NOT). its NOT that everything is relative. The order of unconnected events
is relative (simultaneous for one observer does NOT mean simultaneous for
another), time intervals and lengths depend on how you are moving.... but
there are SOME things which are NOT relative. These are conserved quan-
tities - they are invariant and do NOT depend on the frame/motion of the
observer.

3.1 Collisions

We saw that for a single particle E2 − (pc)2 = m2c4. and if all we are
considering is a single particle then whatever frame we transfer to, m2c4 will
be the same. so suppose its in a frame where it has velocity βc. then

E2 − (pc)2 = γ2m2c4 − γ2m2v2c2 = γ2m2c4(1− v2/c2) = m2c4

irrespective of the value of β.

But when we have multiple particles involved, what happens next?

In the Relativity homework (Q3, self assessed) you did 2 identical particles,
in the centre of momentum frame they had β = ±0.41 (γ = 1.10) and in the
rest frame of one, the other β = 0.7 (γ = 1.40).

Centre of momentum frame total energy Etot = 2γCMmc
2 = 2.2mc2 and total

momentum is ptot = 0 (CM frame!) so E2
tot− (ptotc)

2 = 2.22m2c4 = 4.81m2c4.
This is NOT the sum of the particle masses squared, as thats 4m2c4. But
it is still a conserved quantity as you can see from switching to the rest
frame of one of the protons, where Etot = γEmc

2 + mc2 = 2.40mc2 and
ptot = γmβc+ 0 = 0.98mc but E2

tot− (pc)2 = (2.402 + 0.982)m2c4 = 4.80m2c4

as before!
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so this IS an invariant but its NOT the sum of the masses. Its the total
energy (rest plus kinetic plus electromagnetic) in the centre of momentum
frame.

its obvious that its not mass when we start to think about a neutral pion,
decaying into two photons!! the photons are massless, the pion is not.

and the final relativity homework question (Q4) makes this very explicit.

3.2 Invariant interval

There is another, even more fundamental invariant in relativity, which comes
from space and time. Its not that everything is relative - there is a sneaky
combination which IS absolute, and does not depend on the frame in which
they are measured.

Take the Lorentz transformations, and go to the limit of small time and space
intervals

dx′ = γ(dx− udt) dy′ = dy dz′ = dz dt′ = γ(dt− dxu/c2)

Have a look at c2(dt′)2 − (dx′)2 − (dy′)2 − (dz′)2

= c2γ2(dt− dxu/c2)2 − γ2(dx− udt)2 − dy2 − dz2

= c2γ2(dt2 − 2u/c2dxdt+ u2/c4dx2)− γ2(dx2 − 2udxdt+ u2dt2)− dy2 − dz2

= c2dt2 − dx2 − dy2 − dz2

So there is some interval which is a combination of time and space which is
the same in any frame. what is this interval if we were in the rest frame?

Rest frame is S ′. if measuring time between two events at the same place
then dx′ = dy′ = dz′ = 0 and this interval is c2(dt′)2 where dt′ = T0 = dτ is
proper time!

so we could say c2dτ 2 = c2dt2 − dx2 − dy2 − dz2
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in the rest frame, we also have proper length so if we measure the ends
simultaneously we’d get (dx′)2 + (dy′)2 + (dz′)2 = L2

0 = ds2

so ds2 = c2dτ 2 = c2(dt′)2 − (dx′)2 − (dy′)2 − (dz′)2 = c2dt2 − dx2 − dy2 − dz2

where ds is SPACE-TIME interval. It is the same in any frame!

so pull it all together and we have c2dτ 2 = ds2 = c2dt2 − dx2 − dy2 − dz2 =
c2(dt′)2 − (dx′)2 − (dy′)2 − (dz′)2 as an invariant

This is called a METRIC it shows how we use coordinates in space and time
to determine the distance between any two points. This particular metric,
the metric of special relativity, is called the Minkowski metric.

One way to read this is that we have a fixed speed - the speed of light -
through SPACETIME. the more of that speed we put through SPACE, the
less there is left to travel through TIME, so we travel through time more
slowly - we age less.

if you are interested in understanding more try ’The elegant Universe’ by
Brian Greene

and actually, I learnt some useful stuff from the childrens book series by
Russell Stannard, ’The space and time of Uncle Albert’ and ’Uncle Albert
and the black holes’

One of the amazing insights I got from this was WHY you can’t go past the
speed of light! we have just done E = mc2 which says mass and energy are
interchangeable. so if we have a particle and give it some kinetic energy then
in some sense we have added to its inertial mass... and when the kinetic
energy starts to dominate over the rest mass then we are in trouble. we
accelerate it, which increases its KE, which makes its mass increase, so its
harder to accelerate... it gets a bit nasty, as velocity has a direction whereas
mass doesn;t so they don’t have quite the same properties. but its a helpful
way to see that whatever the factor is which scales between mass and energy,
then this will be the speed limit.
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