Theoretical Astrophysics: Exercise 1

1) The position vector of any point on a cone of constant opening angle θ_{0} can be written as

$$
\underline{r}=r \sin \theta_{0} \cos \phi \mathbf{i}+r \sin \theta_{0} \sin \phi \mathbf{j}+r \cos \theta_{0} \mathbf{k}
$$

a) write down the basis vectors $\underline{e}_{A}=\partial \underline{r} / \partial x^{A}$ for this surface
b) use these basis vectors to calculate the covarient metric components $g_{A B}=$ $\underline{e}_{A} \cdot \underline{e}_{B}$. Hence show that the line element is $d s^{2}=d r^{2}+r^{2} \sin ^{2} \theta 0 d \phi^{2}$
c) state the general relation between the covariant metric components $g_{A B}$ and contravariant metric components $g^{B C}$. How does this simplify for a diagonal metric? Use this to derive $g^{B C}$
d) Find the dual basis vectors \underline{e}^{A} by raising the index (using the contravarient metric tensor) of the original basis vectors \underline{e}_{A}
e) Compare these with the direct calculation of $e^{A}=\underline{\nabla} x^{A}$ (they are the same modulo a normalisation factor as we don't in general normalise basis vectors). To do this, invert the coordinate transformations to find an expression for r and ϕ in terms of $x, y, z\left[\right.$ HINT $\left.d \tan ^{-1} u / d u=1 /\left(u^{2}+1\right)\right]$

