General relativity

Chris Done University of Durham

Gravity = acceleration

- difference between gravity and acceleration ?
- Look the same, behave the same...
- Maybe they ARE the same 'happiest thought'
- Principle of equivalence: acceleration=gravity

Acceleration: special relativity

- Circular motion easiest to think about
- Measure roundabout circumference (CL) and radius (rL) by crawling around with ruler of length L
- Get ratio C/r= 2π
- Now rotate

Acceleration: special relativity

- Length contracts

 along direction of
 motion so need more
 ruler lengths to go
 round c' > c!! But
 radius unaffected
- Ratio c'/r > 2π
- Can't happen!! ...in flat space

Curved spaces

- Can happen in curved spaces!!
- eg sphere. Circle round equator. Circumference is $2\pi r$, diameter is πr so ratio is $2 < \pi!!!$
- Can get ratio > π only in negatively curved space curves towards in one direction and away in another (saddle)

Triangle: $a + b + c < 180^{\circ}$ Circle: Circumference (C) > $2\pi r$

• So do we REALLY want to do acceleration ?

Gravity = Acceleration (EP) Acceleration = Curvature (SR)

hence

Gravity = **Curvature**

 (\mathbf{GR})

Gravity: warped spacetime

- Gravity IS curvature
- Natural paths (no forces acting ie inertial frames) are 'straight lines' on curved space - geodesics

Toolkit for GR

- How to describe curvature ?
- How does mass(energy) curve space(time) ?

Toolkit for GR

- How to describe curvature ?
- How does mass(energy) curve space(time) ?
- How to describe these 'straight line' natural paths?

True position 🖈 Apparent position 🖈

Toolkit for GR

- How to describe curvature ?
- How does mass(energy) cur
- How to describe these

ural paths?

Apparent position

Curved space tells matter how to move, matter tells space how to curve

- Understand how to describe curvature
- Find the geodesic paths on this curved spacetime. These are inertial frames so we can do physics here SR
- Find out how energy density curves spacetime
- Requires TENSORS (don't get tense!) as this is the maths machinery developed to handle curved spaces.
- 'as simply as possible but no simpler'