
1 Introduction to general relativity

1.1 Admin

Recommended reading is Foster & Nightingale ’A Short Course in General
Relativity’, Springer. I also use Schutz ’A first course in General Relativity’,
CUP, but I also put all my lecture notes on the web. They are available
in DUO or directly at http://duss0.dur.ac.uk/˜done/foundations.html. For
general reading (just for fun) try the Uncle Albert series by Russell Stannard,
and Brian Greene ’The Elegant Universe’. These give you some nice ways to
think about GR.

1.2 gravity=acceleration: Principle of equivalence

Newtons theory of gravity is amazingly accurate in calculating the effects of
gravity in the world around us, but completely silent on what causes gravity.
so what is gravity anyway? its obviously some form of acceleration. how is it
different from pushing something? Einstens ‘happiest thought’ was the reali-
sation that there was no difference between gravity and an accelerating frame
- there is no difference between an accelerated frame without a gravitational
field and a stationary frame within a gravitational field.

So there is a deep connection between gravity and accelerated motion.
This explains why inertial and gravitational masses are the same, which was
a big deep problem. Inertial mass, mi, is the one which gives the constant of
proportionality between force and acceleration - Newtons famous F = mia.
Gravitational mass, mg, determines how the object is affected by the force of
gravity F = GMmg/r

2 = mgg. So when an object falls under a gravitational
field we have a = mg/mig. The only way for all objects to fall the same
way in a gravitational field (feather and hammer) is if mg/mi = constant. If
acceleration and gravity are two different things then this is deeply strange.
Compare it with electrostatics - a test particle of charge q and inertial mass
mi in a field E experiences a force qE and acceleration mia. So a = q/miE
and different particles have difference values of q/mi. But they don’t have
different values of mg/mi! But if gravity is the same as being accelerated
then its not at all strange.
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1.3 Acceleration

So there is this very deep connection between acceleration and gravity so
to understand gravity we need to think about acceleration. Circular motion
is a nice way to get an accelerated frame since the speed stays constant.
So think of a spinning roundabout. One person crawls around ON THE
GROUND with a ruler, and lays it end to end to measure the circumference.
Another person crawls across to measure the diameter. The ratio circumfer-
ence/diameter is then simply π.

But what does someone ON the roundabout measure ? If the ruler is
small enough then the ruler lies along the direction of motion, so its length
is shortened. so the person on the roundabout needs more rulers to get
around the circumference than the person who crawled around the outside
circumference who was at aproximately rest with respect to us. (yes, there
are some sublties, but see the notes at the back of The Elegant Universe).
But along the radius the ruler is perpendicular to the direction of motion so
there is no length contraction so the diameter comes out to be the same as
before. So the ratio circumference/diameter is BIGGER than π. There is
NO WAY to do this in flat space! If we go onto the surface of a sphere (the
surface falls away from us in both directions - positively curved space) then
the ratio circumference/diameter is SMALLER than π (think of the limit of
a circle of radius equal to that of the sphere - the circumference is 2πr but
the diameter is πr so the ratio is 2!). If we go to the inside of a sphere we
are still in positively curved space - it curves towards us in two directions.
But we CAN do it in negatively curved space - like a saddle shape where it
curves away from us in one direction and towards us the other.

So, if we are to handle acclerating frames we MUST use curved space.
And since we know from special relativity that time is also a dimension we
have to handle curved spacetime. So we have to do some fairly advanced
maths in order to figure out path lengths in curved space - its called differ-
ential geometry.

1.4 Curved space

But how does this help us with understanding gravity? Think of ants with
ink on their feet, walking normally i.e. taking steps of equal length with
their left and right (and middle) feet. On a flat piece of paper their inky feet
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leave a path which is a straight line. On a curved surface, still taking steps
of equal length, they trace out a curved path. e.g. two ants setting off from
different points along the equator of a sphere, heading due south. Their paths
get closer and closer together AS IF there were an attractive force between
them. But there is not, its just that they are travelling normally (steps of
equal length with left and right and middle feet) over a surface that is curved.
Now put the ants on the surface of an apple. they still move ’normally’ but
now their paths show a variety of curves depending on the curvature of the
surface of the apple - if the ants walk close to the stalk where the surface is
highly curved then their path curves a lot.

so gravity = acceleration tells us ultimately that gravity = curvature.
THERE IS NO FORCE. the ’walking normally’ paths in physical language
are constant velocity frames - i.e. inertial frames. But in geometric language
they are geodesic paths - shortest distance between two points.

so there is no difference between a free fall frame in a gravitational field
and an inertial frame. This is really the equivalence principle. In a freely
falling (nonrotating) frame then the laws of physics are the laws of special
relativity. THERE IS NO FORCE ACTING!!!!

locally, geodesics (shortest distance between two points) appear straight
but over more extended regions of spacetime then geodesics originally receed-
ing from each other begin to approach at a rate governed by the curvature
of spacetime, and this effect of geometry on matter is what we mean to-
day by the old word gravitation. and this warping of spacetime comes from
matter/energy.

Space tells matter how to move, matter tells space how to curve

1.5 Implications for matter- an explanation of SR speed

limit of c

mass curves spacetime so energy curves spacetime too as E = mc2, mass and
energy are equivalent. So any form of energy adds to curvature of spacetime
which is gravity. so KE adds to the response of the particle to gravity i.e.
adds to its mass. so when the KE gets to be a substantial fraction of the rest
mass then additional acceleration will increase the response to gravity of the
particle ie increase its mass, which stops the velocity increasing above c....!
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1.6 Implications on light - lightbending

If gravity is curved spacetime, then everything that travels across spacetime
is affected - so light is affected by gravity. This is not obvious at all in New-
tonian gravity as Newtonian gravity affects things with mass F = GMm/r2 -
But a = F/m = GM/r2. so we could argue either way in Newtonian gravity
- that light has no mass so is not affected or that gravitational acceleration is
independent of mass so affects everything. But by the beginning of the 20th
century it was obvious that light speed was constant, so betting on gravity
not affecting light seems like the way to go. But in Einsteins gravity, light
is clearly affected as it travels across curved space time so its path will be
curved. And this is what is SEEN in one of the first experimental tests of
GR with light from distant stars which has a projected line of sight which
lies close to the sun. These paths are curved, leading to a different apparent
position than 6 months later when the star is over the other side of the sky
from the sun (have to do the first measurement during a solar eclipse other-
wise the starlight is drowned out by the sun. And the measured ammount
agrees exactly with GR - which is 2x bigger than newtonian assuming GM/r2

and definitely different from Newtonian straight line if light not affected by
gravity

1.7 Implications for matter and light

We need gravity to affect light otherwise we could build an infinite energy
machine!! This is the Pounds-Rebka-Snyder experiment. A particle dropped
from a tower of height h has energy of its rest mass plus mgh at the bottom,
then we converting this energy to a photon and send it back up the tower.
if gravity doesn’t affect light then it arives at the top with energy hν =
m0c

2+m0gh. And if we convert all this energy to mass then we get a particle
of mass m1c

2 = m0c
2 + m0gh ie m1 > m0. Do this an infinite number of

times and get infinite enrgy out!!! not a good plan. By contrast, if gravity
can affect light then the photon loses the same amount of energy on the way
up as the particle gained on the way down. this is gravitational redshift and
its measureable and GR gets it right!
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1.8 The way ahead

1) understand how to describe curvature
2) figure out how mass(energy) curves spacetime(!!!)
3) find the geodesic paths in our curved spacetime - these will be the natural
’straight line’ paths that particles/photons will take if no forces acting

2 Mathematical Background

2.1 Curvature as distance: the metric

distance between points tells us the shape of the surface. and we’ve already
seen how to do this in terms of a metric. e.g. special relativity has

ds2 = c2dt2−dx2−dy2−dz2 =
(

cdt dx dy dz
)
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or this can also be written as a direct sum

ds2 = Σ3

α=0
Σ3

β=0
dx(α)η(α, β)dx(β)

where dx(0) = cdt, dx(1) = dx dx(2) = dy and dx(3) = dz and η(α, β) =
diag(1,−1,−1,−1)

This hasn’t really made life look any easier!!! but we’re also going to
use the Einstein summation convection: whereever an expression contains
one index as a superscript and the SAME index as a subscript then the
summation is implied. so we could write this a lot more neatly as ds2 =
ηαβdx

αdxβ.

2.2 Notation

First lets start with standard vectors r = xi +yj +zk in standard cartesian
coordinates. This notation is incredibly clumsy. So we’re going to use instead
a much more powerful and very compact notation. Axes are labeled by
indices so {x, y, z} = {x1, x2, x3} where the superscripts DO NOT MEAN
’raised to the power’ but instead pick out the components along the x, y and
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z axes i.e. along the i,j,k directions which we are now going to call e1, e2, e3.
If we need to raise to the power we will make it obvious e.g (x1)3. Then we
can write this as

r = x1e1 + x2e2 + x3e3

It doesn’t look much better yet. But we are going to get very sick of
writing all the coordinates so we’re going to use shorthand notation that {xi}
means all of the {x1, x2, x3}. We’re also going to use the Einstein summation
convection: whereever an expression contains one index as a superscript and
the SAME index as a subscript then the summation is implied. So our vector

r = x1e1 + x2e2 + x3e3 = xiei = Σ3

j=1
xjej = xjej

It really doesn’t matter what we call the index we sum over - if it occurs
in the sum, we sum over it, whatever it is! But we’ll have a convention that
roman letters from the middle of the alphabet go from 1-3 (3D space, i,j...),
while roman letters from the start of the alphabet (a,b,c...) mean {x1, x2..xN}
- any N dimensional space and capital roman letters from the start of the
alphabet (A,B....) mean 2D space. Greek letters are for spacetime, and go
from 0-3, so {x0, x1, x2, x3} where x0 = ct, and {xi} = {x, y, z}.

Once we have picked a given space(time) then we might do coordinate
transformations within this. Up till now you’ve often seen this denoted as
the primed coordinate frame, with the prime on the kernal letter, e.g. x′ =
γ(x − vct/c) as the Lorentz transformation for the x coordinate I’m going
to put a bar on the index to denote a transformation to a different frame (a
prime can all to easily get mistaken for a 1, and I’m going to do it on the
individual indices rather than on the kernal letter as we’re going to generalise
to things with more than 1 index...!!) so it looks like x1 = γ(x1 − vx0/c).
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