
4.3 Newtonian gravity meaning of curvature tensor

In Newtonian gravity then two particles initially at rest at the same horizontal
distance x but at vertical distance ±y (where y ≪ x) from a star of mass M
are accelerated radially by the gravitational force ∼ GM/x2. Since they are
in free fall they are travelling on geodesics, and these geodesics are getting
closer together as the particles fall towards the star. Resolving the radial
force on one of the stars into a force along the same direction as the other
radial force, and one perperdicular to it then there is a force towards the
other particle of size 2GM/x2y/x and the distance apart is ∼ 2y. Thus
there is an acceleration term between the two particles of magnitude which
is pulling them together so
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= −
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x3
y

Convert this now to path length using dirty astrophysicists approximations
so ds2/dt2 ∼ c2

d2y

ds2

(ds

dt

)2

=
d2y

ds2
c2 = −

GM

x3
y

d2y

ds2
= −

GM

c2x3
y

Compare this with the curvature tensor

D2ζa

du2
= −Ra

cbdζ
bẋcẋd

Biggest term again is for c = d = 0 so

D2ζa

du2
≈ −Ra

0b0ζ
bc2

ζa is the separation and its (0, 0, y, 0) as both particles have the same t, x
and z then there is only separation in y so this becomes

D2y

du2
≈ −Ry

0y0yc2

Again we see explicitally that the tidal forces which we’d associate with
gravity can be made simply from curved spacetime. The curvature tensor in
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some sense tells us about TIDAL forces - how gravity changes from point to
point.

And in flat space, then all the Ra
cbd = 0 so D2ζa/du2 = 0 and geodesics

separate as ζa = Au + B i.e. in flat space, geodesics either maintain a
constant separation (parallel lines) or separate/approach linearly. So with
no gravity things continue in staright lines at constant velocity!

4.4 More on the Curvature tensor

We’ve seen above that the Riemann curvature tensor is the way to describe
curvature in all its gory detail. Hence it also describes other curvature de-
pendent quantities such as the swing in the tensor components if its parallel
transported around a little loop about a point P. If the looped components
are λa(loop) and the old are λa then

λa(loop) − λa = ∆λa = −
1

2
(Ra

bcd)P λbf cd

where f cd is a coordinate area term.
Since curvature also comes into the covariant derivative, then its the

Riemann curvature tensor which gives the difference in order of derivatives..

λa
;bc − λa

;cb = −Ra
dbcλ

d

BUT WHAT IT PHYSICALLY MEANS ISN’T ANY OF THESE!! IT
PHYSICALLY MEANS TIDAL FORCES FROM GRAVITY!

4.5 Stress-Energy Tensor

So the curvature of space is related to tidal forces, ie to M/R3 which is
the density of mass. We want to get some tensor equation (valid in any
frame) such that curvature=gravity, so we want some tensor equation linking
the Riemann curvature tensor and mass density. But it can’t just be mass
density. Einstein said that mass and energy are equivalent so in fact ALL
forms of energy (not just mass) should gravitate. And in fact if this were so
it would make some sense of SR. If you accelerate a particle, giving it more
and more energy, then as you approach c then the mass increases rather than
the velocity. Which is all a bit arbitrary unless all forms of energy gravitate
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because then as we add energy we increase the inertial (i.e. gravitational)
mass. So what we want is a tensor equation linking energy density with
curvature.

First we will see how to characterise energy density in SR. In SR we gen-
erally dealt with individual particles. where E = γmoc

2 which is the particle
energy, uµ = dxµ/dτ is 4–velocity, vµ = dxµ/dt is coordinate velocity and
pµ = m0u

µ is the 4 momentum of the particle. A stationary particle has pµ =
m0(c, 0, 0, 0) while a moving one has pµ = m0γ(c, dx1/dt, dx2/dt, dx3/dt) We
want to generalise these to look at density. This is a problem because of
course density is a frame dependent quantity. The total number of particles
in a given volume must be invariant but the volume changes by length con-
traction along the direction of motion, so if n0 is the number density in the
rest frame then n0γ is the number density as measured in a moving frame.
But if we are now moving, then there is a flux of particles across the surfaces.
i.e. we take two separate concepts density and flux, and make them into a
single 4-vector the number-flux 4-vector N = n0u so this has components
Nµ = n0u

µ. This is a 4-vector as it transforms in the right way for a con-
travariant tensor. In the rest frame then Nµ = n0dxµ/dτ . In a moving frame
then Nν′

= ndxν′

/dτ = n0dxν′

/dxµdxµ/dτ = dxν′

/dxµNµ. Alternatively we
could just have said that we know uµ = dxµ/dτ is a 4 vector and so since
Nµ is related to it only by invariant quantities (rest frame density) then this
must also be a 4-vector.

So that is density done. But we wanted energy density. Lets stick in the
rest frame for the time being, then if the particles have no velocity relative to
each other then the energy density is simply m0c

2n0 = ρ0c
2 where ρ0 is the

mass density in the rest frame. But if we then go to another frame we have
to transform the energy AND the density - so it transforms by two factors
of γ. So this needs to be a second order contravariant tensor. How about
T µν = Nµpν - in the rest frame then this would have only one component
T 00 = n0cm0c = ρ0c

2. That sounds like a good start. So T µν = Nµpν =
nuµm0u

ν = ρ0u
µuν .

This works if we are only dealing with dust i.e. something where the
particles have no internal motions, and no stresses or heat conduction or
anything complicated. But in general a gas HAS internal motion - particles
are moving with respect to each other so there is no rest frame as such for
each particle, only a rest frame for the gas as a whole.

we can define a more general T µν by considering what happens for a
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perfect fluid - gas with both rest mass AND internal motions - this is
PRESSURE. from SR we know that the energy of this in the rest frame is
3p = 3n0kT , so the total energy density in the rest frame is ρ0c

2 + 3n0kT .
So we could do this if

T µν = diag(ρ0c
2, p, p, p)

pressure is a flux of momentum, so it belongs to the T 0i not T 00 component.
Lets write the stress energy tensor for a perfect fluid as the sum of tensors

T µν = (ρ0 + p/c2)uµuν − pηµν

where η = diag(1,−1,−1,−1) is the flat space (Minkowski) metric tensor
i.e. ds2 = ηαβdxαdxβ = c2dt2 = −dx2 − dy2 − dz2) remebering that x0 = cdt.
so we can see its a tensor as its made out of things that are either invariant
(scalars) or tensors. and in the rest frame it has components T 00 = (ρ0 +
p/c2)c2 − p = ρ0c

2 and T 0i = −p. − 1 = p so this indeed has the right form
in the rest frame.

its a symmetric tensor T µν = T νµ as ηµν is symmetric and uµuν = uνuµ.
We can already see something really fun. PRESSURE contributes to

energy density, and energy density curves space. So for the interior of a star,
as the fuel runs out then the star contracts and gravity gets stronger. so we
require a larger pressure to hold the star up. But this presssure adds to the
energy density, so increases gravity, so more pressure is needed so .... black
holes!

4.6 Conservation laws

The stress energy tensor for a perfect fluid in special relativity.

T µν = (ρ0 + p/c2)uµuν − pηµν

is a really compact way to count up all the contributions to the energy den-
sity, and its a tensor so it works in all (inertial) frames. We did it simply
for a perfect fluid (dust+pressure), but it can be made more general as T µν

is defined as the flow of momentum associated with xµ across the xν sur-
face. so T 00=energy density, T 0i=energy flux through ith surface i.e. heat
conduction, T i0=momentum density - if heat is conducted then that energy
also has momentum. T ij is shear stress so these are zero for perfect fluid.
pressures go perpendicular to surface (no shear stresses).
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But the stress energy tensor also embodies more information. Energy
is conserved. Rate of change of energy is l3∂T 00/∂t. But this change is
produced by net energy inflow/outflow along the 6 faces of the cube. The
energy flow in is cl2T 01(x) and then energy flow out is l2cT 01(x + l) so net
inward flow is l2(T 01(x) − T 01(x + l) = −l2c(∂T 01/∂x)l = −l3c∂T 01/∂x.
There are similar contributions from the other 2 pairs of faces so we have

l3
∂T 00

c∂t
= −l3c

∂T 01

∂x
− l3c

∂T 02

∂y
− l3c

∂T 03

∂z

∂T 00

c∂t
+

∂T 0i

∂xi
= 0

∂αT 0α = 0

Momentum is also conserved. and that leads to

∂αT iα = 0

In other words, conservation of both momentum and energy are embodied
in

∂αT βα = 0

as the stress-energy tensor is symmetric then there is only one divergance
∂αT βα = ∂αT αβ .

And we can generalise this from SR to GR by replacing partial derivative
with covarient derivative (comma goes to semicolon rule) so T αβ

;β = 0

4.7 strong equivalence principle - how to go from SR

to GR

Any physical law which can be expressed in tensor notation in SR has EX-
ACTLY the same form in a locally inertial frame of a curve spacetime (GR)!
Locally inertial frames (free fall frames) are equivalent to saying we choose
to look at a small piece of spacetime, where we can approximate any curved
space to a locally flat space. In this choice of coordinates (local cartesian co-
ordinates) then all the christoffel symbols are zero so standard diferentiation
and covariant differentiation are the same. BUT once we go outside of this
the curvature becomes apparent. So to make our tensor equations work in
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any general frame we need to swap standard differentiation (which is NOT
a real tensor) (∂/∂xc = ∂c =,c with covariant differentiation ;c (which IS a
tensor). So this is sometimes called the comma goes to semicolon rule!

and then we need to swap a flat space minkowski metric for a real curved
metric. and then we are done!

So if we wanted to generalise T µν and its conservation laws to GR we’d
swap the metric tensor from flat space to generalised curved space so for a
perfect fluid

T µν = (ρ0 + p/c2)uµuν − pgµν

and take the covariant deriavative rather than the partial derivative

T βα
;α = 0

4.8 Towards the Einstein equations

Well, we have a bit of a problem. We want a tensor equation which has
curvature=energy density. The stress energy tensor is second order,

T µν = (ρ0 + p/c2)uµuν − pgµν

this is symmetric as the metric is symmetric. and it also has covariant deriva-
tive of zero as this embodies the conservation laws for energy and momentum.

So we are looking for a way to denote curvature which is also a second
order symmetric tensor with covariant derivative of zero. But the Riemann
curvature tensor which completely embodies all the information about the
curvature of space is a 4th order tensor. There is no way that a second order
tensor can be equal to a 4th order one. So we need to CONTRACT the Rie-
mann curvature tensor, preferably without losing any information about the
spatial curvature!!! and we know from the index symmetries Rabcd = −Rbacd

and Rabcd = −Rabdc and Rabcd = Rcdab, and Ra
bcd + Ra

cdb + Ra
dbc = 0 that

the Riemann curvature tensor does not have N4 independent components -
it actually has only(!) N2(N2 − 1)/12. So for a 2D space, there is only one
independent component which is R1212 when you work it out explicitally.

4.9 Ricci Tensor

If we were to contract Ra
bcd we could sum over one of the covariant indices

with the contravariant one. But which covariant index - in principle Ra
acd 6=
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Ra
bad 6= Ra

bca.
But the index symmetries Rabcd = −Rbacd means that Raacd = −Raacd = 0

so Ra
acd = 0. So this is not a useful index to contract over!

So now we have the choice of contracting over index 3 or 4. But Rabcd =
−Rabdc so Ra

bad = −Ra
bda. So modulo a sign change then there is only one

non–zero contraction of the Riemann curvature tensor, which we call the
Ricci tensor.

Rab = Rc
abc

NB there is no widely accepted convention for the sign of the Riemann
curvature tensor, or the Ricci tensor, so check the sign conventions of what-
ever book you are reading.
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