
5 Schwarzschild metric

Rµν
−

1

2
gµνR = Gµν = κT µν

where

Gµν = Rµν
−

1

2
gµνR

Einstein thought it would never be solved. His equation is a second order
tensor equation - so represents 16 separate equations! Though the symmetry
properties means there are ’only’ 10 independent equations!!

But the way to solve it is not in full generality, but to pick a real physical
situation we want to represent. The simplest is static curved spacetime
round a spherically symmetric mass while the rest of spacetime is empty.
Schwarzchild did this by guessing the form the metric should have

c2dτ 2 = A(r)c2dt2 − B(r)dr2
− r2dθ2

− r2 sin2 θdφ2

so the gµν are not functions of t - field is static. And spherically symmetric
as surfaces with r, t constant have ds2 = r2(dθ2 + sin2θdφ2).

Then we can form the Lagrangian and write down the Euler lagrange
equations. Then by comparision with the geodesic equations we get the
Christoffel symbols in terms of the unknown functions A and B and their
radial derivatives dA/dr = A′ and dB/dr = B′. We can use these to form
the Ricci tensor components as this is just defined from the christoffel sym-
bols and their derivatives. And for EMPTY spacetime then Rµν = 0 NB
just because the Ricci tensor is zero DOES NOT means that the Riemann
curvature tensor components are zero (ie no curvature)!! Setting Rνµ = 0
means that the equations are slightly easier to solve when recast into the
alternative form

Rαβ = κ(T αβ
−

1

2
gαβT )

empty space means all the RHS is zero, so we do simply solve for Rαβ = 0.
This gives A = (1 + k/r) and B = 1/A.

Then we have to do some weak field limit connections to get the constant
k = 2GM/c2. Thus

ds2 = c2dτ 2 = (1−2GM/c2r)c2dt2−(1−2GM/c2r)−1dr2
−r2dθ2

−r2 sin2 θdφ2

1



or set GM/c2 = m

ds2 = c2dτ 2 = (1 − 2m/r)c2dt2 − (1 − 2m/r)−1dr2
− r2dθ2

− r2 sin2 θdφ2

In this form we don’t have to worry about κ but we can use the weak
field approximation to connect it to gravity and get κ = −8πG/c4.

The Schwarzschild metric is how gravity curves spacetime IFF the Ein-
stein equations are correct! we saw that they are not derivable from first
principles - they are merely the simplest way we can write gravity = curva-
ture. So we need to see if this works, so we need to use this metric to figure
out what this spacetime curvature (=gravity) predicts for paths of particles
and photons which we can then MEASURE to test the theory.

5.1 Meaning of the Schwarzschild metric

We derived the metric from the Einstein equations, assuming that the cos-
mological constant is negligible and get

ds2 = c2dτ 2 = c2(1 − 2m/r)dt2 − (1 − 2m/r)−1dr2
− r2dθ2

− r2 sin2 θdφ2

where m = GM/c2. The dt, dr, dθ, dφ are COORDINATES, not proper time,
or proper distance. What do they mean ?

With m = 0 then the metric becomes simply Minkowski in spherical
coordinates ie ds2 = c2dτ 2 = c2dt2 − dr2

− r2dθ2
− r2 sin2 θdφ2

Proper time is the time as measured by a clock which travels along with a
particle - its obviously invariant as its a property of the particle NOT of the
frame! Travelling WITH a particle means that there is no relative spatial
motion so c2dτ 2 = c2dt2 ie dτ = dt ie proper time is coordinate time as
measured by clocks which are stationary in the reference frame. Now turn
m up, and dτ 2 = (1− 2m/r)dt2. We are still going to say that clocks record
proper time intervals along their world lines, and this clock is fixed, so we
have that coordinate time is NOT equal to proper time dτ < dt.

Proper distance is distance of an object measured at the same time so
dt = 0. generally we supress the -ve sign in the metric and get proper distance
as the spatial part of the metric so dr2 + r2dθ2 + r2 sin2 θdφ2. For fixed θ
and φ then ds2 = dr2 for m = 0. When we turn up m then the distances go
strange - dR2 = (1 − 2m/r)−1dr2. The proper distance ds IS NO LONGER
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given by dr, instead we have dR = (1 − 2m/r)−1/2dr > dr. The way to do
this is to curve space and can be visualised in an embeding diagram.

Asymptotically, both r and t go to proper distance and proper time.
But there is another feature of the metric which is immediately apparent:

ds2 = c2dτ 2 = c2(1 − 2m/r)dt2 − (1 − 2m/r)−1dr2
− r2dθ2

− r2 sin2 θdφ2

which is that something very odd happens at r = 2m. the coefficient on radial
coordinate → ∞ while that for cooridate time → 0. and worse happens for
r < 2m, as the corefficients change sign. To understand this, lets see what
happens to a stationary observer, held at fixed position by rockets. The the
metric becomes ds2 = c2dτ 2 = (1 − 2m/r)c2dt2 < 0. but the spacetime
interval is then IMAGINARY - there are no real paths! The only real paths
for r < 2m MUST involve the spatial part of the metric changing fast enough
to offset the -ve term which comes from coordinate time. So there are no
such thing as stationary observers for r < 2m. Moving forward in time
REQUIRES that you also move to smaller radius!! Everything goes down
the hole.

5.2 Gravitational redshift

So we can instantly do gravitational redshift for stationary observers as these
have proper time intervals which are given by dτ = (1 − 2m/r)1/2dt. So
if we have light emitted at rE and received at rR then the time intervals
each observer experiences are dτE = (1 − 2m/rE)1/2dtE and dτR = (1 −

2m/rR)1/2dtR.
so how are coordinate time intervals related?
We send a light beam along a radial null geodesic. The beam is emitted

at rE and received at rR. Then the path is

0 = c2(1 − 2m/r)dt2 − (1 − 2m/r)−1dr2

so it travels at coordinate speed

dr

dt
= ±c(1 − 2m/r)

so the coordinate time taken (use +ve if going outwards)

tR − tE =
1

c

∫ rR

rE

(1 − 2m/r)−1dr
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we could evaluate this but we’re not going to as the important this is that it
only depends on space. If we send another signal a bit later from the same
fixed position emitter to the same fixed position reciever then this coordinate
time difference will be the same.

tR1 − tE1 = tR2 − tE2

so then the coordinate time difference between the two emitted signals an
the two received signals is also the same

tR1 − tR2 = tE1 − tE2 = ∆t

But the clock at the point of emission records proper time not coordinate
time. It is fixed in space, so the time it measures between the two signals is

∆τE = (1 − 2m/rE)1/2∆tE = (1 − 2m/rE)1/2∆t

but so is the clock at the receiver

∆τR = (1 − 2m/rR)1/2∆tR = (1 − 2m/rR)1/2∆t

so
∆τE

∆τR
=

(1 − 2m/rE

1 − 2m/rR

)1/2

Suppose the emitter were pulsating, then it has frequency ν ∝ 1/∆τ . So

νR

νE

=
(1 − 2m/rE

1 − 2m/rR

)1/2

If rE < rR then the photon crawls uphill so it loses energy so νR < νE .
This can be measured - in the laboratory with a large tower as in the Pounds–
Rebka–Snyder experiment. If light is unaffected by gravity then we can build
an infinite energy machine where a particle dropped from a tower has rest
mass plus mgh at the bottom, then converting mass to energy into a photon
and send it back up the tower. if gravity doesn’t affect light then it arives at
the top with energy hν = m0c

2 + m0gh. And if we convert all this energy to
mass then we get a particle of mass m1c

2 = m0c
2+m0gh ie m1 > m0. Do this

an infinite number of times and get infinite enrgy out!!! not a good plan. By
contrast, gravitational redshift means that the photon loses the same amount
of energy on the way up as the particle gained on the way down.

And gravitational redshift can be measured - either on earth by sending
photons up a tower - though this is s TINY effect. Or look at absorption
lines from the surface of a white dwarf and get a much bigger effect.
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5.3 cyclic coordinates

To find geodesics paths (ie inertial frames!) then the first thing to do is write
down the metric - and tailor it to the situation you want to solve. The do
the Euler-Lagrange equations. Here we want general paths. These change
in both φ and r but they are in a PLANE (θ=constant) so without loss of
generality as the metric is spherically symmetric we can take this plane to
be θ = π/2 so the metric is then

ds2 = c2dτ 2 = (1 − 2m/r)c2dt2 − (1 − 2m/r)−1dr2
− r2dφ2

Geodesic paths so must satisfy the Euler-Lagrange equation where

L = 1/2gαβẋαẋβ
− (1 − 2m/r)c2ṫ2 − (1 − 2m/r)−1ṙ2

− r2φ̇2

The E-L equations are
d

dτ

∂L

∂ẋα
−

∂L

∂xα
= 0

where dot denotes derivative with respect to proper time (which is an affine
parameter). The easy equations will be those where a coordinate does not
appear e.g. t and φ as then the Euler Lagrange equations only have one term

d

dτ

( ∂L

∂ẋα

)

= 0

so ∂L/∂ẋα = constant. These are called cyclic coordinates.
Lets choose to do time coordinate x0 = ct first to see what its saying

∂L

∂ẋ0
= (1 − 2m/r)ẋ0 = (1 − 2m/r)

p0

∆

since this is constant then if we find its value anywhere we know its value
everywhere. At r → ∞ this → p0

∞
/∆ = E∞/(∆c). so

(1 − 2m/r)ẋ0 = (1 − 2m/r)cṫ = E∞/(∆c)

(1 − 2m/r)c2ṫ = E∞/∆ = E

i.e. E is energy per unit mass at infinity,
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