
5.9 Circular orbits: particles

Then our metric simplifies a bit as dr = 0

ds2 = c2dτ 2 = c2(1− 2m/r)dt2 − r2dφ2

so the Lagrangian is L = 1/2(c2(1 − 2m/r)ṫ2 − r2φ̇2) We can do the Euler
lagrange equations for r

L = 1

2
[(1− 2m/r)c2ṫ2 − r2φ̇2]

∂L

∂ṙ
= 0

∂L

∂r
= c2ṫ2

∂

∂r
(−m/r)− rφ̇2 = c2ṫ2m/r2 − rφ̇2

E-L equation in r is d/dτ(0)− (c2ṫ2m/r2 − rφ̇2) = 0
c2ṫ2m/r2 = rφ̇2

so the COORDINATE time for one orbit is

mc2t2orb = r3(2π)2 torb = 2π[r3/(mc2)]1/2 = 2π(r3/GM)1/2

ie same as Newtonian except this is COORDINATE time, not proper time.
PROPER TIME measured by someone going round on this orbit (sub.

back into metric)

c2 = c2(1− 2m/r)ṫ2 − r2φ̇2 = c2(1− 2m/r)ṫ2 − r2mc2ṫ2/r3

1 = (1− 3m/r)(dt/dτ)2

dτ = (1− 3m/r)1/2dt

τorb = (1− 3m/r)1/2torb

We saw last lecture that there is a last stable orbit at r = 6m. so lets
do what happens here. The proper time for one orbit as experienced by the
orbiter is

τorb = (1− 3m/r)1/2torb = torb/
√
2

or we can put numbers in and do

torb = 2π[(6m)3/(mc2)]1/2 = 2π14.7m/c = 92.3m/c
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hence τorb = 65.3m/c
proper time for someone INSIDE the spacecraft orbiting at r = 6m is

different the proper time as experienced by someone hovering at this radius
- held there by firing rockets (not on a geodesic). We know how to relate
proper time to coordinate time when we are stationary - its simply the metric
with no spatial parts as all the dr, dθ, dφ = 0 i.e. dτ = (1− 2m/r)1/2dt.

hence the proper time as measured for one orbit at r = 6m for the
hovering craft is τhov = (1−2m/r)1/2torb = (2/3)1/2torb = 0.816torb compared
to torb/

√
2 = 0.707torb

The astronauts in the hovering probe see a LONGER elapsed time - they
are older than their companions who orbited.

When the orbiting spacecraft comes past, the people in the hovering
spacecraft send a radial light signal to friends at ∞. So the proper time
interval for one orbit as measured by these at ∞ is c2dτ 2 = (1−2m/∞)c2dt2

so dτ = dt - proper time is the same as coordinate time. so for one orbit,
someone stationary at infinity thinks it takes a time τ

∞
= torb which is the

same as the newtonian time for an orbit! then the hovering spacecraft sees
it take 0.816torb while the person on the geodesic sees the smallest time at
0.707rorb. geodesics are minimum proper time as they are minimum proper
distance paths.

5.10 Black holes as time machines

well, so we can age at only 70% of the rate as someone at infinity if we are
orbiting at r = 6m. This isn’t really very impressive. if we have rockets we
can do better as we can orbit further in, using the rockets to do the path
corrections to these unstable circular orbits.

for the orbiting observer, τorb = (1 − 3m/r)1/2torb. So proper time goes
to zero at r = 3m, and goes COMPLEX for r < 3m. What does this MEAN
physically ? it means that there are NO geodesic circular orbits possible at
r < 3m. and that the proper time goes to zero for r = 3m. that makes
us think of light as light travels on null geodesics, puts all its fixed spped c
through space so has none left to travel through time.

so we guess that r = 3m is where light orbits. lets check by solving the
circular orbit equations again for light.

for light we still have the radial E-L equation c2ṫ2m/r2 = rφ̇2 but the
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metric is now null so

0 = c2(1− 2m/r)ṫ2 − r2φ̇2 = c2(1− 2m/r)ṫ2 − r2mc2ṫ2/r3

0 = (1− 3m/r)(dt/dτ)2

hence light orbits at r = 3m. and if we had done a full V 2(r) from non-
circular orbits we’d see that this was an unstable orbit.

This is very different to Newtonian gravity where circular orbits are al-
ways possible. In Newtonian orbits you can always balance gravity just by
running round faster. In SR/GR you can only run as fast as the speed of
light. r = 3m is the orbit for going at the speed of light. So there are no
faster orbits. And if you were going around on this orbit, then you wouldn’t
age as you are going at the speed of light.

so we can use this to make an effective time machine. have twins (labeled
1 and 2) start at some radius r → ∞. Twin 1 goes in a spacecraft and drops
down to a radius *just* above 3m, which they time as taking proper time
τdrop. They then do millions of orbits at this radius in a a very small proper
time, and then they fire the rockets and go back. Assume their rockets are
good enough to make this take the same time as τdrop. Then they have aged
≈ 2τdrop, whereas twin 2 has aged by *much* more.

so this is an effective way to travel into the future. But NOT the past!!

5.11 using tensors to calculate redshifts on circular or-

bits

All this so far was very algebraic - does this mean that we can now drop
all that evil tensor maths ? NO! actually, the evil tensors are our friends
for whenever things get a bit complicated. Suppose our orbiting spacecraft
was sending light signals back out to infinity. and we wanted to know what
frequency we observed them to be if the rest wavelength emitted is νem. we
can see that there will be quite a few effects to keep track of. there are
the doppler shifts - when the spacecraft is at the tangent point, comming
directly towards us, there should be blueshift, and when its at the other
tangent point, going directly away, there is a redshift. But on both sides
there should also be a special relativisitc time dialiation as ’fast clocks run
slow’ and a gravitational redshift as well since its being emitted in a strong
gravitational field. doing all this correctly is going to be tough. instead, we
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can just do the tensors as the emitted frequencies are (uαp
α)em where the

4-velocity is that of the emitting particle and the 4-momentum that of the
light, and the observed ones are (uαp

α)obs where the 4-velocity is the velocity
of the observer and 4-momentum is that of the light they observe. so

1 + z = νobs/νem = (uαp
α)obs/(uαp

α)em

4-velocity for the orbiting satellite is uα = (cṫ, ṙ, ˙theta, φ̇) = (cṫ, 0, 0, φ̇)

we know that on circular orbits we have c2ṫ2m = r3 ˙phi
2

and for particles
we had ṫ2 = (1− 3m/r)−1.

substitute back and get φ̇2 = mc2(1− 3m/r)−1/r3 so

u0 = cṫ = c/(1− 3m/r)1/2 and u3 =
√

mc2/[r3(1− 3m/r)]
so, thats our 4-velocity. what about the emitted light? lets make it simple

and look only at the tangent points. here the light at teh moment of emission
has only tangential motion so ṙ = 0 so 0 = (1− 2m/r)c2ṫ2 − r2φ̇2

but the standard E-L equation is (1− 2m/r)ṫ = E/c2 then
0 = (1− 2m/r)c2E2/[c4(1− 2m/r)2]− r2φ̇2

0 = E2/[c2(1− 2m/r)]− r2φ̇2

φ̇2 = (E/c)2/[r2(1− 2m/r)]
φ̇ = ±(E/c)/[r(1− 2m/r)1/2]
4-momentum for the emitted light is p0 = cṫ and p3 = φ̇

pα =
( E/c

(1− 2m/r)
, 0, 0,±

E/c

r(1− 2m/r)]1/2

)

now we do need the ± sign as on one side the light is emitted in the same
direction as the particle is moving, and in the other its opposite.

for a stationary observer at infinity uα = (c, 0, 0, 0), while they see the
light with pα = (E

∞
/c, 0, 0, 0). so gαβu

βpα = E
∞

= hν
∞

but

(pαuα)em = gαβp
αuβ = g00u

0p0 + g33u
3p3

1st term

= (1− 2m/r).(hν
∞
/c)/(1− 2m/r).c/(1− 3m/r)1/2 = (hν

∞
)/(1− 3m/r)1/2

2nd term

= ±r2
(hν

∞
/c)

r(1− 2m/r)1/2
×

√

√

√

√

mc2

r3(1− 3m/r)
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= ±hν
∞

√

√

√

√

m/r

(1− 2m/r)(1− 3m/r)

hνem =
hν

∞

(1− 3m/r)1/2
[1±

√

√

√

√

m/r

(1− 2m/r)1/2
]

at r=6m ν
∞
/νem = (1− .5)1/2/[1 + 1/2] = 2

√

1/2/3 = 0.47

and = (1− .5)1/2/[1− 1/2] = 2
√

1/2 =
√
2 = 1.41

so if this was instead a line emitted from the disc, we’d see it as broadened
by all these effects!
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