Black holes and accretion

Chris Done University of Durham

Special relativity

- Towering achievement
- Throw away ideas about fixed space and fixed time!!!
- NOT that everything is relative!
- Fixed spacetime interval
- 1D + time,

 $ds^2 = c^2 d\tau^2 = c^2 dt^2 - dx^2$

Special relativity

- $ds^2 = c^2 d\tau^2 = c^2 dt^2 dx^2$
- Travelling at fixed speed c through spacetime....

- Generally all through time
- If put some of the motion through space then takes longer to move through time (time dilation)
- BUT only does inertial frames not acceleration

Gravity = acceleration

- difference between gravity and acceleration ?
- Look the same, behave the same...
- Maybe they ARE the same 'happiest thought'
- Principle of equivalence: acceleration=gravity

Gravity = acceleration

- Also solves deep problem
- Inertial mass response to accelerating force F_i=m_ia
- Response to gravitational force governed by 'gravitational charge' F_g=m_gGM/r²
- $F_g/F_i \propto m_g/m_i = const$
- No other force constant behaves like this eg EM $F_{em} = q Q/4\pi\epsilon_0 r^2$
- $F_{em}/F_i \propto q/m_i$ different e^-p^+
- But obviously F_g/F_i same if gravity = acceleration

Acceleration: special relativity

- Circular motion easiest to think about
- Measure roundabout circumference (CL) and radius (rL) by crawling around with ruler of length L
- Get ratio C/r= 2π
- Now rotate

Acceleration: special relativity

- Length contracts

 along direction of
 motion so need more
 ruler lengths to go
 round c' > c!! But
 radius unaffected
- Ratio c'/r > 2π
- Can't happen!! ...in flat space

Curved spaces

- Can happen in curved spaces!!
- eg sphere. Circle round equator. Circumference is $2\pi r$, diameter is πr so ratio is $2 < \pi!!!$
- Can get ratio > π only in negatively curved space curves towards in one direction and away in another (saddle)

• If we want to do acceleration then we have to do curved spaces. ie curved spacetime!!

Triangle: $a + b + c < 180^{\circ}$ Circle: Circumference (C) > $2\pi r$

• So do we REALLY want to do acceleration ?

Acceleration = Curvature (SR) Gravity = Acceleration (EP)

hence

Gravity = **Curvature**

Gravity: warped spacetime

- Gravity IS curvature
- Natural paths (no forces acting ie inertial frames) are 'straight lines' on curved space - geodesics

Toolkit for GR

- Matter tells space how to curve
- Curvature tells matter how to move

Mass and energy are equivalent

- Spacetime curved by all contributions to energy density
- Makes sense of Special Relativity!! $m = \gamma m_0$
- Increase velocity so increase KE so increase response to gravity. KE dominated by rest mass for v<<c so constant response to gravity (mass).
- But at v~c then KE dominates. Increasing energy increases response to gravity ie increases inertial mass, so harder to increase speed!
- Stops you going faster than c

Implication: Gravity affects light

- Newton 1: F=GMm/r2 so gravity doesn't affect massless particles – light travels in straight lines
- Newton 2: F/m=a=GM/r2 so acceleration not dependent on mass (hammer and feather)
- GR twice deflection of Newton 2 \bullet

True position \checkmark Apparent position

Implication: Gravity affects light

- Newton 1: F=GMm/r2 so gravity doesn't affect massless particles – light travels in straight lines
- Newton 2: F/m=a=GM/r2 so acceleration not dependent on mass (hammer and feather)
- GR twice deflection of Newton 2 ightarrow

True position Apparent position

Implication: Gravity affects light

- Newton 1: F=GMm/r2 so gravity doesn't affect massless particles light travels in straight lines
- Newton 2: F/m=a=GM/r2 so acceleration not dependent on mass (hammer and feather)
- GR twice deflection of Newton 2

True position

• Drop particle from rest, mass m_1 so start from rest mass only $E=m_0c^2$

- Drop particle from rest, mass m_1 so start from rest mass only $E=m_0c^2$
- Gain PE: $E=m_0c^2 + m_0gh$ at base

- Drop particle from rest, mass m_1 so start from rest mass only $E=m_0c^2$
- Gain PE: $E=m_0c^2 + m_0gh$ at base

- Convert energy to photon at base
- Send photon back up
- Convert to particle at top
- photons (massless): Newtonian $E=m_1c^{2=}hv_1=m_0c^2 + m_0gh > m_0c^2$
- Infinite energy machine !!!
- So light MUST BE affected by gravity. Einstein predicts this as light also travels across curved spacetime
- Time dilation = gravitational redshift $hv_t = m_0 c^2$ but $hv_b = m_0 c^2 + m_0 gh$ $v_t / v_b = mc^2 / (mc^2 + mgh) \approx 1 - GMh/r^2$

- See the equivalence principle
- Time = h/c, acceleration a=g
- Speed u=ah/c = gh/c
- Doppler redshift $v_{/}v_{0} \approx (1-u/c)$ = 1-gh/c²r² same as grav redshift
- No gravity so seen at 'top' at v
- Same as in grav redshift!
- Free falling frames REALLY are inertial frames

—	-
	1
)
	>
	2 1
	2

Toolkit for GR

- How to describe curvature ?
- How does mass(energy) curve space(time) ?
- How to describe these 'straight line' natural paths?

Toolkit for GR

- How to describe curvature ?
- How does mass(energy) current
- How to describe these

tural paths?

Apparent position

Curved space tells matter how to move, matter tells space how to curve

- Find out how energy density curves spacetime
- Find the geodesic paths on this curved spacetime. These are inertial frames so we can do physics here SR
- Requires TENSORS (don't get tense!) as this is the maths machinery developed to handle curved spaces. Also easy to transform between different frames. Write physics in inertial frame: path is straight line at constant speed. Transform out and path is curved 'as if' a force is operating
- 'as simply as possible but no simpler'