
1 Overview of General Relativity

1 lecture: how to THINK! thought experiment on the roundabout. acceleration curves space(time).
Equivalence principle says acceleration = gravity - free fall is an inertial frame. Hence gravity =
curved spacetime.
3 lectures: tensors - the way to mathematically handle curved space(time)
5 lectures: characterising curvature - differentials, geodesic paths are inertial (ie force free) frames
and the Riemann curvature tensor
2 lectures: gravity caused by energy density - stress energy tensor = curvature Einstein equations!
6 lectures: implications of schwarzchild metric. cyclic coordinates and conserved quantities. geodesics
in weak field limits: precession of perihelion of elliptical orbits and lightbending round the sun.
geodesics in strong gravity - black holes and the nature of the event horizon

2 Tensors

These are defined by their transformation properties so a tensor equation is valid in ALL frames.
So write physical laws as tensor equations in an inertial frame (special relativity) and then they still
work when we change the frame to an accelerating one.
Summation convention AαBα = A0B0 +A1B1 +A2B2 +A3B3. Greek letters run from 0-3, mid roman
(i,j,k...) from 1-3 (spatial part) and the rest of the alphabet (a,b,c...) from 1-N.

Do transforms between frames with partial derivatives! Definitions of partial derivatives in terms
of total derivative

df

dτ
=

∂f

∂x

dx

dτ
+

∂f

∂y

dy

dτ
+

∂f

∂z

dz

dτ
=

∂f

∂xi

dxi

dτ

REMEMBER HOW TO DO PARTIAL DERIVATIVES! ∂(1 − 2m/r)/∂t 6= d(1 − 2m/r)/dt. The
first one is ZERO while the second is 2mṙ/r2 where ṙ = dr/dt !

So the frame transformation which relates the new coordinate system xα to the old one xβ goes
as

dxα =
∂xα

∂xβ
dxβ

Contravariant first order Aα =
∂xα

∂xβ
Aβ

Things that transform like position eg 4-momentum, pα, 4-velocity, uα, 4-force etc.

Covariant first order Aα =
∂xβ

∂xα
Aβ

eg things like the gradient of a scalar field.

second order mixed Aα
β

=
∂xα

∂xµ

∂xν

∂xβ
Aµ

ν

e.g. δµ
ν = 1 for µ = ν and 0 otherwise. With mixed tensors we can contract e.g. δν

ν = δ0
0 + δ1

1 +
δ2
2 + δ3

3 = 4

second order covariant gαβ =
∂xµ

∂xα

∂xν

∂xβ
gµν

eg the metric tensor! This is completely defined by the curvature of space - its how distance relates
to position. Its also the way to raise and lower indices (change from covariant to contravariant).
Aα = gαβAβ and Aα = gαβAβ where gαβgβγ = δγ

α. So uαpα = gαβuβpα.
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3 Curvature

Curved space means that differentials of tensors are tricky - sliding a vector around in flat space
means the vector stays parallel to itself. In curved space this isn’t true and the final direction of the
vector depends on the path taken over the curved space. Condition for parallel transport of some
vector - length and direction stay the same along a path s so

dλ

ds
= 0 =

d(λaea)

ds
=

dλa

ds
ea + λaΓc

ab

dxb

ds
ec

where ∂ea/∂xb = Γc
abec - definition of Christoffel symbols. THEY ARE NOT TENSORS as they

don’t transform as tensors. They show how the basis vectors change over the space and so are related
to the metric.

Γc
ab =

1

2
gcd(∂agbd + ∂bgda − ∂dgab)

so in FLAT space in cartesian coordinates (but not in polar coordinates!) these are zero. Get the
derivative onto the same vector to show how components change - this is called absolute derivative

Dλa

ds
=

dλa

ds
+ λbΓa

bc

dxc

ds
= λ̇a + λbΓa

bcẋ
c

where dot denotes derivative wrt s.

Covariant derivative - take the path dependance out: λa
;c = ∂cλ

a + λbΓa
bc The metric tensor has

covariant derivative of zero so raise/lower in derivatives gµνR
ν

ρ;σ = Rµρ;σ

Geodesic paths are they are the shortest distance path between two points, equivanently they are
an inertial frame. ie velocity v = vaea stays constant so Dv/ds = 0 ie. parallel transport so

dva

ds
+ vbΓa

bc

dxc

ds
= 0

but va = dxa/ds by definition of velocity so a geodesic path satisfies

d2xa

ds2
+ Γa

bc

dxb

ds

dxc

ds
= 0

This holds for any affine parameter u linearly related to path length s.

3.1 Euler-Lagrange equations

In classical mechanics, the Lagrangian L(ẋµ, xµ) = 1

2
gµν ẋµẋν , where dot denotes derivative wrt proper

time τ , gives total energy and a geodesic path is the one which minimises this energy. This gives
another derivation of the geodesic equations, and gives us the Euler-Lagrange equations on our way.

d

du

( ∂L

∂ẋµ

)

−
∂L

∂xµ
= 0

Equivalent to geodesic equations but easier! also can compare these with the geodesic equations and
read off the Christoffel symbols - easier than calculating Christoffel symbols from the metric and its
derivatives.
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3.2 Riemann curvature tensor

Two geodesics separated by distance ζa. The rate at which this separation changes determines
everything about the curvature of the space. TIDAL FORCES

D2ζa

du2
+ Ra

cbdζ
bdxc

du

dxd

du
= 0 Ra

cbd = Γa
beΓ

e
cd − ∂dΓ

a
bc − Γa

edΓ
e
bc + ∂bΓ

a
dc

but Γa
bc is defined in terms of the derivatives of the metric, so this is all about the 1st and second

derivatives of the metric. So its ZERO in flat space. Ra
cbd also determines the change in orientation

of a first order tensor as its parallel transported round a small closed loop.
Contract to form the Ricci Tensor Ra

bca = Rbc

raise one index and contract again to get curvature scalar R = gcbRbc

4 Stress-Energy tensor and the Einstein equations

Gravity is caused by energy density. Think of energy density in Special Relativity. Dust where
particles have no internal motion - density transforms with frame and energy transforms with frame
so this needs to be a second order tensor T νµ. For perfect fluid in its rest frame then the pressure
counts in the energy density as well - POSITIVELY. It adds to gravity (inward force) because it has
energy. Conservation of energy and momentum T µν

;ν = 0.

Einstein equations: Rµν
;ν = 1

2
gµνR so to put something about curvature equal to the stress-energy

tensor. Full version is

Rµν −
1

2
gµνR + Λgµν = κT µν = −

8πG

c4
T µν

where Λ is the cosmological constant (integration constant) and we get κ = −8πG/c4 from weak field
association with gravity. An alternative form (setting Λ = 0) is

Rµν = κ(T µν −
1

2
gµνT )

where T = T µ
µ = gµνT

νµ

5 The schwarzchild metric

The Einstein equations are viciously non-linear. Solve by IMPOSING the form of solution we want.
e.g. Schwarzschild metric. Time independent, spherically symmetric EMPTY spacetime around some
mass. So T µν = T = 0. And the metric can ONLY depend on r (spherical symmetry) so MUST take
the form

ds2 = A(r)c2dt2 − B(r)dr2 − r2dθ2 − r2 sin2 θdφ2

Get the Christoffel symbols from the Euler Lagrange equations, then stick all this into the Einstein
equations to solve for A(r) = (1 − k/r) and B(r) = A(r)−1, and use weak field association with
gravity to get constant k = 2GM/c2 = 2m. This gives the SCHWARZSCHILD METRIC

ds2 = (1 − 2m/r)c2dt2 − (1 − 2m/r)−1dr2 − r2dθ2 − r2 sin2 θdφ2

where m = GM/c2. We use tensors to solve the Einstein equations and get the metric. But then we
more or less abandon them!
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Proper time is the ’real’ time as measured by a clock which travels along the with a particle,
proper distance is ’real’ distance. COORDINATE TIME AND COORDINATE DISTANCE are not!
Coordinates are just a way of linking spacetime in one place with spacetime elsewhere. With m = 0
then gµν = ηµν i.e flat Minkowski spacetime. For m 6= 0 then at r = 2m the metric tensor components
gtt → 0 and grr → ∞ - Schwarzschild radius. means that there is no such thing as stationary observers
- ds2 must be greater than 0 for real paths, but this would be < 0 for a stationary observer at r < 2m!

5.1 Geodesics

Stick to the equatorial plane. Then dθ = 0 and sin2 θ = 1 and the metric simplifies a bit. The
Lagrangian gives Euler-Lagrange equations for the geodesics, and/or use the metric for relating
coordinates. Cyclic coordinates (ones which the metric does NOT depend on such as t and φ) imply
conservation of covariant momentum in that coordinate p0 = c(1 − 2m/r)ṫ = E/c so (1 − 2m/r)ṫ =
E/c2 and pφ = r2φ̇ = Lz - conservation of total energy and angular momentum respectively.

Always simplify the metric according to the physical situation eg radial paths have dφ = 0, circular
orbits have dr = 0 NULL geodesics (light) have ds2 = 0

radial null geodesics (LIGHT). dφ = 0. This can be done just from the metric. Gives gravitational
redshift. The coordinate time difference between signal being emitted E and received R depends only
on spatial path. so two signals have the same coordinate time difference. tR1 − tE1 = tR2 − tE2 so
tE2 − tE1 = tR2 − tR1 so ∆t(E) = ∆t(R). Then transform coordinate time to proper time and get

∆τ(E)

∆τ(R)
=

ν(R)

ν(E)
=

(1 − 2m/r(E)

1 − 2m/r(R)

)1/2

(weak field test: Pounds-Rebka gravitational redshift)
Also can use radial null geodesics to calculate the time taken for radial signals to propagate -

proper distance is larger AND there is a gravitational time delay. (weak field test: radar signal in
solar system)
Elliptical orbits (PARTICLES) - get the equations in terms of dr/dφ and r. (weak field test:
advance of perihelion of mercury)
Lightbending (LIGHT) - again want equations in terms of dr/dφ and r (weak field test: deflection
of light round Sun)

5.2 Geodesics round black holes

effective potential for particle orbits solve for ṙ2. get cubic equation in V 2(r) terms are rest
mass, newtonian gravity, centrifugal force plus extra term for GR gravity being stronger. no stable
orbits below r=6m, no circular orbits at all below r=3m (as going at speed of light here!). and horizon
at r=2m
radial particle geodesics (PARTICLES). dφ = 0. get the remaining equations in terms of dr/dτ and
r. This shows that r = 2m is NOT a real singularity as the proper time to fall from r > 2m to r = 0
is finite. The real singularity is at r = 0. not infinite force here - its just not possible to be stationary
below r = 2m even with inifinte rocket power as metric ds2 = (1−2m/r)c2dt2 − (1−2m/r)−1dr2 < 0
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