(a) equivalence principle - gravity is the same as acceleration and/or that free fall is the same as no gravity
gravity=curvature.
[2 marks]
spacetime curved by mass/energy
[1 mark]
travel in straight line (natural paths) over curved surface so path looks curved.
[1 mark]
(b) $\partial_{c} g_{a b}=\partial_{c}\left(\underline{e}_{a} \cdot \underline{e}_{b}\right)=\partial_{c}\left(\underline{e}_{a}\right) \cdot \underline{e}_{b}+\underline{e}_{a} \cdot \partial_{c}\left(\underline{e}_{b}\right)$
[1 mark]
$=\Gamma^{d}{ }_{c a} \underline{e}_{d} \cdot \underline{e}_{b}+\underline{e}_{a} \Gamma^{d}{ }_{c b} \underline{e}_{d}=\Gamma^{d}{ }_{c a} g_{d b}+\Gamma^{d}{ }_{c b} g_{a d}$
[1 mark]
$a \rightarrow b, b \rightarrow c$ and $c \rightarrow a$ gives $\partial_{a} g_{b c}=\Gamma_{a b}^{d} g_{d c}+\Gamma_{a c}^{d} g_{b d}$. Repeat $\partial_{b} g_{c a}=\Gamma^{d}{ }_{b c} g_{d a}+\Gamma_{b a}^{d} g_{c d} \quad$ [1 mark]
$\partial_{c} g_{a b}+\partial_{a} g_{b c}-\partial_{b} g_{c a}=\Gamma^{d}{ }_{c a} g_{d b}+\Gamma^{d}{ }_{c b} g_{a d}+\Gamma^{d}{ }_{a b} g_{d c}+\Gamma_{a c}^{d} g_{b d}-\Gamma^{d}{ }_{b c} g_{d a}-$ $\Gamma_{b a}^{d} g_{c d}=2 \Gamma^{d}{ }_{c a} g_{d b}$
[1 mark]
$g^{f b} g_{b d} \Gamma^{d}{ }_{c a}=\delta^{f}{ }_{d} \Gamma^{d}{ }_{c a}=\Gamma_{c a}^{f}=\frac{1}{2} g^{f b}\left(\partial_{c} g_{a b}+\partial_{a} g_{b c}-\partial_{b} g_{c a}\right) \quad[1$ mark $]$
(c)

$$
\frac{D \chi}{d u}=\frac{D\left(\mu_{a} \lambda^{a}\right)}{d u}=\frac{D \mu_{a}}{d u} \lambda^{a}+\mu^{a} \frac{D \lambda^{a}}{d u}
$$

ie Leibniz's rule for derivatives
[1 mark]
but absolute derivative of scalar same as normal so $D \chi / d u=d \chi / d u=$
$d\left(\mu_{a} \lambda^{a}\right) / d u=\left(d \mu_{a} / d u\right) \lambda^{a}+\mu_{a} d \lambda^{a} / d u$
[1 mark]
$\left(d \mu_{a} / d u\right) \lambda^{a}+\mu_{a} d \lambda^{a} / d u=D \mu_{a} / d u \lambda^{a}+\mu_{a}\left(d \lambda^{a} / d u+\Gamma_{b c}^{a} \lambda^{b} d x^{c} / d u\right)$
$\left(d \mu_{a} / d u\right) \lambda^{a}=D \mu_{a} / d u \lambda^{a}+\mu_{a} \Gamma_{b c}^{a} \lambda^{b} d x^{c} / d u$
[1 mark]
relabel indices so cancel $\lambda^{b}:\left(d \mu_{b} / d u\right) \lambda^{b}=D \mu_{b} / d u \lambda^{b}+\mu_{a} \Gamma_{b c}^{a} \lambda^{b} d x^{c} / d u$ [1 mark]
derivative - compare quantities across small spatial difference. but vector can change from spatial curvature as well as real change. so real change is total - space curvature (parallel transport). [1 mark]
(d) null metric for light $0=(1-2 m / r) c^{2} \dot{t}^{2}-r^{2} \dot{\phi}^{2} \quad[1 \mathrm{mark}]$ substitute in $\dot{t}^{2}=r^{3} \dot{\phi}^{2} /\left(m c^{2}\right)$ so $0=(1-2 m / r) c^{2} r^{3} \dot{\phi}^{2} /\left(m c^{2}\right)-r^{2} \dot{\phi}^{2}$ [1 mark]
$0=(1-2 m / r) r^{3}-m r^{2}=r^{3}-2 m r^{2}-m r^{2}$
[1 mark]
$r^{3}-3 m r^{2}=0$ so $r=3 m$
unstable orbits
(e) particles $c^{2}=(1-2 m / r) c^{2} \dot{t}^{2}-r^{2} \dot{\phi}^{2}$
substitute in $\dot{t}^{2}=r^{3} \dot{\phi}^{2} /\left(m c^{2}\right)$ so $c^{2}=(1-2 m / r) c^{2} r^{3} \dot{\phi}^{2} /\left(m c^{2}\right)-r^{2} \dot{\phi}^{2}$ $m c^{2}=(1-2 m / r) r^{3} \dot{\phi}^{2}-r^{2} m \dot{\phi}^{2}$
$m c^{2}=\dot{\phi}^{2}\left(r^{3}-3 m r^{2}\right)$
$\dot{\phi}^{2}=m c^{2} /\left(r^{3}(1-3 m / r)\right) \quad[2$ marks $]$
$\dot{\phi}^{2}=(d \phi / d \tau)^{2}$ so for orbit at r_{0} its $(2 \pi / \tau)^{2}=m c^{2} /\left(r_{0}^{3}\left(1-3 m / r_{0}\right)\right)$
so $\tau=2 \pi\left[r_{0}^{3}\left(1-3 m / r_{0}\right) /\left(m c^{2}\right)\right]^{1 / 2}$
[2 marks]
(f) in the limit as $m \rightarrow 0$ then

$$
\left(\frac{d u}{d \phi}\right)^{2}+u^{2} \rightarrow \frac{E^{2}}{c^{2} L_{z}^{2}}
$$

[1 mark]
test solution $u=u_{0} \sin \phi$ so $d u / d \phi=u_{0} \cos \phi$ and $(d u / d \phi)^{2}=u_{0}^{2} \cos ^{2} \phi$ [1 mark]
substitute in $u_{0}^{2} \cos ^{2} \phi+u_{0}^{2} \sin ^{2} \phi=E^{2} /\left(c^{2} L_{z}^{2}\right)=u_{0}^{2} \quad[1 \mathrm{mark}]$
distance of closest approach is $r_{0}=1 / u_{0}=c L_{z} / E$
[1 mark]
paths get bent towards the massive object
[1 mark]
$\mathrm{U}=$ unseen - but they will have seen similar examples using a different metric
(a) $L=\frac{1}{2}\left[r^{-2} \dot{r}^{2}+r^{2} \dot{\phi}^{2}\right]$
[U: 1 mark]
$\partial L / \partial r=\frac{1}{2}\left[-2 r^{-3} \dot{r}^{2}+2 r \dot{\phi}^{2}\right]=-r^{-3} \dot{r}^{2}+r \dot{\phi}^{2}$
[U: 1 mark]
$\partial L / \partial \dot{r}=\frac{1}{2} r^{-2} 2 \dot{r}=r^{-2} \dot{r}$
[U: 1 mark]
sub into EL: $\frac{d}{d \tau} \frac{\partial L}{\partial \dot{r}}-\frac{\partial L}{\partial r}=0$

$$
\begin{array}{ll}
d / d \tau\left(r^{-2} \dot{r}\right)+r^{-3} \dot{r}^{2}-r \dot{\phi}^{2}=0 & \text { [U: } 1 \text { mark] } \\
r^{-2} \ddot{r}+\dot{r} \cdot\left(-2 r^{-3}\right) \dot{r}+r^{-3} \dot{r}^{2}-r \dot{\phi}^{2}=0 & \\
\text { so } \ddot{r}-(1 / r) \dot{r}^{2}-r^{3} \dot{\phi}^{2}=0 & {[\mathrm{U}: 1 \text { mark] }} \\
\partial L / \partial \phi=0 & \text { [U: } 1 \text { mark] } \\
\partial L / \partial \dot{\phi}=r^{2} \dot{\phi} & \text { [U: } 1 \text { mark] } \\
d / d \tau\left(r^{2} \dot{\phi}\right)-0=0 & \text { [U: } 1 \text { mark] } \\
r^{2} \ddot{\phi}+2 r \dot{r} \dot{\phi}=0 \text { ie } \ddot{\phi}+(2 / r) \dot{r} \dot{\phi}=0 & \text { [U: } 1 \text { mark] }
\end{array}
$$

(b) geodesic equation in r is

$$
\begin{align*}
& \ddot{r}+\Gamma^{r}{ }_{r r} \dot{r}^{2}+\Gamma^{r}{ }_{r \phi} \dot{r} \dot{\phi}+\Gamma^{r}{ }_{\phi r} \dot{\phi} \dot{r}+\Gamma^{r}{ }_{\phi \phi} \dot{\phi}^{2}=0 \\
& \ddot{r}+\Gamma^{r}{ }_{r r} \dot{r}^{2}+2 \Gamma^{r}{ }_{r \phi} \dot{r} \dot{\phi}+\Gamma^{r}{ }_{\phi \phi} \dot{\phi}^{2}=0 \tag{U:2marks}
\end{align*}
$$

and in ϕ is
$\ddot{\phi}+\Gamma^{\phi}{ }_{r r} \dot{r}^{2}+2 \Gamma^{\phi}{ }_{r \phi} \dot{r} \dot{\phi}+\Gamma^{\phi}{ }_{\phi \phi} \dot{\phi}^{2}=0$
[U: 2 marks]
so compare coefficients and the only non zero christoffel symbols in r
are $\Gamma^{r}{ }_{r r}=-1 / r$ and $\Gamma^{r}{ }_{\phi \phi}=-r^{3}$
[U: 1 mark]
and $\Gamma_{r \phi}^{\phi}=\Gamma^{\phi}{ }_{\phi r}=1 / r$
[U: 1 mark]
(c) $\phi=s / a-b: \dot{\phi}=1 / a, \ddot{\phi}=0, \dot{r}=\ddot{r}=0$
[U: 1 mark]
sub into EL for r : $-r^{3}(1 / a)^{2} \neq 0$ so NOT geodesic,
[U: 1 mark] even though EL in ϕ has $\ddot{\phi}+2 \Gamma^{\phi}{ }_{r \phi} \dot{r} \dot{\phi}=0+(2 / r) \cdot 0 .(1 / a)=0$

$$
\begin{aligned}
& \text { (d) } d \lambda^{r} / d r+\Gamma^{r}{ }_{B r} \lambda^{B}=0 \\
& d \lambda^{r} / d r+\Gamma^{r}{ }_{r r} \lambda^{r}=d \lambda^{r} / d r-1 / r \lambda^{r}=0 \\
& \text { [U: } 1 \text { mark] } \\
& d \lambda^{r} / d r=\lambda^{r} / r \text { so } d \lambda^{r} / \lambda^{r}=d r / r \\
& \text { [U: } 1 \text { mark] } \\
& \text { hence }\left[\log \lambda^{r}\right]_{\lambda^{r}\left(r_{0}\right)}^{\lambda^{r}\left(r_{1}\right)}=[\log r]_{r_{0}}^{r_{1}} \\
& \text { [U: } 1 \text { mark] } \\
& \text { and } \lambda^{r}\left(r_{1}\right) / \lambda(r 0)=r_{1} / r_{0} \\
& \text { [U: } 1 \text { mark] } \\
& \text { similarly } d \lambda^{\phi} / d r+\Gamma_{B r}^{\phi} \lambda^{B}=0 \\
& \text { [U: } 1 \text { mark] } \\
& d \lambda^{\phi} / d r+\Gamma_{\phi r}^{\phi} \lambda^{\phi}=d \lambda^{\phi} / d r+1 / r \lambda^{\phi}=0 \\
& \text { [U: } 1 \text { mark] } \\
& d \lambda^{\phi} / d r=\lambda^{\phi} / r \text { so } d \lambda^{\phi} / \lambda^{\phi}=-d r / r \\
& \text { [U: } 1 \text { mark] } \\
& \text { hence }\left[\log \lambda^{\phi}\right]_{\lambda^{\phi}\left(r_{0}\right)}^{\lambda^{\phi}\left(r_{1}\right)}=[-\log r]_{r_{0}}^{r_{1}} \\
& \text { [U: } 1 \text { mark] } \\
& \text { and } \lambda^{\phi}\left(r_{1}\right) / \lambda^{\phi}\left(r_{0}\right)=r_{0} / r_{1} \\
& \text { [U: } 1 \text { mark] } \\
& \text { length } g_{r r} \lambda^{r}\left(r_{1}\right) \lambda^{r}\left(r_{1}\right)+g_{\phi \phi} \lambda^{\phi}\left(r_{1}\right) \lambda^{\phi}\left(r_{1}\right) \\
& \text { [U: } 1 \text { mark] } \\
& =\left(r_{1}\right)^{-2}\left(\lambda^{r}\left(r_{0}\right)\right)^{2}\left(r_{1} / r_{0}\right)^{2}+\left(r_{1}\right)^{2}\left(\lambda^{\phi}\left(r_{0}\right)\right)^{2}\left(r_{0} / r_{1}\right)^{2} \\
& \text { [U: } 1 \text { mark] } \\
& =\lambda^{r}\left(r_{0}\right)^{2} /\left(r_{0}\right)^{2}+\lambda^{\phi}\left(r_{0}\right)^{2}\left(r_{0}\right)^{2} \text { so no dependence on } r_{1} \text { so its constant } \\
& \text { with respect to } r_{1} \text {. } \\
& \text { [U: } 1 \text { mark] }
\end{aligned}
$$

(a) $c^{2}=(1-2 m / r) c^{2} \dot{t}^{2}-(1-2 m / r)^{-1} \dot{r}^{2}$ and $(1-2 m / r) \dot{t}=1$ so
$c^{2}=(1-2 m / r) c^{2} /(1-2 m / r)^{2}-(1-2 m / r)^{-1} \dot{r}^{2}$
$c^{2}(1-2 m / r)=c^{2}-\dot{r}^{2}$
$\dot{r}=d r / d \tau= \pm c \sqrt{2 m / r}$
[S: 2 marks]
-ve as infall. $-d r \sqrt{r / 2 m}=c d \tau$

$$
c \tau=\int_{r_{1}}^{r_{2}}-d r \sqrt{r / 2 m}=\int_{r_{2}}^{r_{1}} d r \sqrt{r / 2 m}=\frac{1}{\sqrt{2 m}} \frac{\left[r_{1}^{3 / 2}-r_{2}^{3 / 2}\right]}{3 / 2}
$$

[S: 2 marks]
This is continuous across $r=2 m$
[S: 1 mark]
(b) coordinate velocity $d r / d t$ so back to metric and divide by $d t^{2}$ to get $c^{2} / \dot{t}^{2}=(1-2 m / r) c^{2}-(1-2 m / r)^{-1}(d r / d t)^{2}$
[S 1 mark] and then substitute in $(1-2 m / r) \dot{t}=1$ to get $c^{2}(1-2 m / r)^{2}=(1-$ $2 m / r) c^{2}-(1-2 m / r)^{-1}(d r / d t)^{2}$
[S: 2marks]
$c^{2}(1-2 m / r)^{3}=(1-2 m / r)^{2} c^{2}-(d r / d t)^{2}$
$(d r / d t)^{2}=c^{2}(1-2 m / r)^{2}[1-(1-2 m / r)]=c^{2}(1-2 m / r)^{2} 2 m / r$
hence $(d r / d t)= \pm c(1-2 m / r) \sqrt{2 m / r}$
[S: 2 marks]
inwards. $(d r / d t)=-c(1-2 m / r) \sqrt{2 m / r}$, and $r=2 m+\epsilon$ so $(d r / d t)=$ $-c(1-2 m /(2 m+\epsilon) \sqrt{2 m /(2 m+\epsilon)}$
$(d r / d t)=-c\left(1-(1+\epsilon / 2 m)^{-1}\right)(1+\epsilon / 2 m)^{-1 / 2}$
[U 2 marks]
binomial $(d r / d t) \rightarrow-c(1-(1-\epsilon / 2 m))(1-\epsilon / 4 m) \rightarrow-c \epsilon / 2 m[\mathrm{U}: 2$ marks]
$c t=-\int_{6 m}^{2 m+\epsilon} \frac{d r}{1-2 m / r} \sqrt{\frac{r}{2 m}} \rightarrow-\int_{6 m}^{2 m+\epsilon} \frac{2 m}{\epsilon} d \epsilon \rightarrow-2 m \log \epsilon \rightarrow \infty$ as $\epsilon \rightarrow 0$
[S: 2 marks]
(c) new metric is $c^{2} d \tau^{2}=(1-2 m / r)\left(c d T-\frac{(2 m / r)^{1 / 2}}{(1-2 m / r)} d r\right)^{2}-(1-2 m / r)^{-1} d r^{2}$

$$
c^{2} d \tau^{2}=(1-2 m / r) c^{2}\left[d T^{2}-2 \frac{(2 m / r)^{1 / 2}}{(1-2 m / r)} d r d T+\frac{(2 m / r)}{(1-2 m / r)^{2}} d r^{2}\right]-(1-2 m / r)^{-1} d r^{2}
$$

[U 2 marks]
$c^{2} d \tau^{2}=(1-2 m / r) c^{2} d T^{2}-2(2 m / r)^{1 / 2} c d T d r+(2 m / r)(1-2 m / r)^{-1} d r^{2}-(1-2 m / r)^{-1} d r^{2}$
[U 2 marks]

$$
c^{2} d \tau^{2}=(1-2 m / r) c^{2} d T^{2}-2(2 m / r)^{1 / 2} c d T d r-d r^{2}
$$

[U 2 marks]
light has $d \tau=0$ so $0=(1-2 m / r) c^{2} d T^{2}-2(2 m / r)^{1 / 2} c d T d r-d r^{2}$ hence $0=(1-2 m / r) c^{2}-2(2 m / r)^{1 / 2} c d r / d T-(d r / d T)^{2} \quad[\mathrm{U} 2$ marks] solve quadratic
$d r / d T=\left[-2(2 m / r)^{1 / 2} c \pm \sqrt{4.2 m c^{2} / r-4(1-2 m / r) c^{2}}\right] / 2[\mathrm{U} 2$ marks]
$=-2 m / r^{1 / 2} \pm \sqrt{2 m c^{2} / r-(1-2 m / r) c^{2}}=-2 m c / r^{1 / 2} \pm c$
$=(-\sqrt{2 m / r} \pm 1) c$
[U 2 marks]
outgoing have $d r / d T=(1-\sqrt{2 m / r}) c<0$ for $r<2 m$ so the light goes inwards even though it was emitted outwards!
[U 2 marks]

