
6.7 Geodesic paths - photon orbits (cont)

one of the Newtonian predictions is that photons should travel in a straight
line. The equation for this in terms of u and φ would be u = u0 sin φ where
u0 is the value of u at closest approach, r0 = 1/u0 which is also called
an impact parameter. Then du/dφ = u0 cos φ so (du/dφ)2 = u2

0
cos2 φ and

(du/dφ)2 +u2 = u2

0
cos2 φ+u2

0
sin2 φ = u2

0
. i.e. its the same as the GR except

GR has an extra term 2mu3. This is very small, so here we make this explicit
by saying 2m = ε. then

(du

dφ

)2

+ u2 =
E2

c2L2
z

+ εu3

at closest approach then u = u0 again and du/dφ = 0 so

u2

0
=

E2

c2L2
z

+ εu3

0

we can use this to substitute for E2/c2L2

z = u2

0
− εu3

0
in the general equation

(du

dφ

)2

+ u2 = u2

0
(1 − εu0) + εu3

This should have a solution which is just a small perturbation of the flat
spacetime solution - maybe u = u0 sin φ + εf(φ) where f is some function of
φ to be determined. Stick this in, and ignore anything with higher powers of
ε

2 cos φ
df

dφ
+ 2f sin φ = u2

0
(sin3 φ − 1)

This is just a first order differential equation of f , so we’ll go look up the
solution.

f =
1

2
u2

0
(1 + cos2 φ − sin φ) + A cos φ

A is a constant of integration so can be found from the boundary conditions.
At r = ∞ then φ = 0 and f = 0, so A = −u2

0
. So our full solution for the

weak field effect of gravity on the path of a light beam is

u = u0(1 −
1

2
εu0) sin φ +

1

2
εu2

0
(1 − cos φ)2
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So our full solution for the weak field effect of gravity on the path of a
light beam is

u = u0(1 −
1

2
εu0) sin φ +

1

2
εu2

0
(1 − cos φ)2

so we no longer expect a straight line as the photon goes from φ = 0 to π. As
r → ∞ i.e. u → 0 then φ → π + α where α � 1. cos(π + α) = cos π cos α −
sin π sin α ≈ −1 while sin(π + α) = sin π cos α + cos π sin α = − sin α ≈ −α.

0 = −(1 −
1

2
εu0)α + 2εu0 ≈ −α + 2εu0

α ∼ 2εu0 = 4
GM

r0c2

Take r0 as equal to the suns radius and look at a star in the line of sight
just away from the limb of the sun and then the prediction for the deflection
of its position is 1.75 seconds of arc. This was the first test of GR, measuring
positions of stars close to the sun as seen during a solar eclipse and comparing
these to their positions as seen when the sun was nowhere near the line of
sight.

6.8 Orbits in strong field GR

We did wimpy weak field geodesics for particles and photons. Now lets do it
in full strong field GR

ds2 = c2dτ 2 = (1 − 2m/r)c2dt2 − (1 − 2m/r)−1dr2 − r2dφ2

cyclic coordinates (1 − 2m/r)ṫ = E/c2 and r2φ̇ = Lz substitute back into it
the metric and solve for ṙ

c2 = (1 − 2m/r)c2ṫ2 − (1 − 2m/r)−1ṙ2 − r2φ̇2

c2(1 − 2m/r) = E2/c2 − ṙ2 − L2

z(1 − 2m/r)/r2

ṙ2 = E2/c2 − c2(1 + L2

z/c
2r2)(1 − 2m/r)

ṙ2 = c2[E2/c4 − V 2(r)]

where V 2(r) = (1 + L2

z/c
2r2)(1 − 2m/r). this is the effective potential - the

terms represent an angular momentum barrier and gravity.
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We can get more insight into this by contrasting with Newtonian - angular
momentum and gravity give an effective potential. gravity is easy. angular
momentum needs a bit of thinking. centrifugal force is F = −mv2/r. but
Lz = r2φ̇ = rv so F/m = −L2

z/r
3. Potential is the integral of force so this

gives a potential term of = L2

z/2r
2. hence in newtonian we get

V (r) =
L2

z

2r2
− GM/r

The first term is the angular momentum barrier - particle orbits around a
large mass - it wants to get closer because gravity is attractive, but as it gets
closer then by conservation of angular momentum it goes faster so there is
a bigger force outwards. This V (r) → ∞ as r → 0, and → 0 as r → ∞ and
has a minimum. If the particle energy E = Vmin then the orbit is circular. if
Vmin < E < 0 then there is a range of r from rmin to rmax which the particle
can access - this is an elliptical orbit. And if instead E > 0 then it is not
bounded at large r, but only limited at small r by the angular momentum
barrier - this is a hyperbolic orbit.

In GR then the potential is a bit diffferent to the Newtonian shape. V 2 -
zero at r = 2m, → −∞ as r → 0 and → 1 as r → ∞. turning points where
dV 2/dr = 0.

(1 + L2

z/c
2r2) − 2md(r−1)/dr + (1 − 2m/r)L2

z/c
2d(r−2)/dr = 0

(1 + L2

z/c
2r2)2m/r2 = 2L2

z/c
2r3(1 − 2m/r)

(1 + L2

z/c
2r2)mr2 = L2

zr/c
2(1 − 2m/r)

mr2 + mL2

z/c
2 = L2

zr/c
2 − 2mL2

z/c
2

r2 − L2

zr/mc2 + 3L2

z/c
2 = 0

r = [L2

z/mc2 ±
√

L4
z/m

2c4 − 4.3L2
z/c

2]/2

r = L2

z/2mc2 ± L2

z/2mc2

√

1 − 12m2c2/L2
z

So in general has 2 turning points. Do d2V 2/dr2 and see that the maximum
is at smaller r, minimum at larger r.

But for Lz =
√

12mc then the two turning points merge together, with
both at r = 6m. d2V 2/dr2 = 0 so this is neither a maximum nor a minimum
- its a point of inflection. Stable orbits require a MINIMUM in the potential
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and that the particle energy E2 is less than V 2 on either side of the minimum
so that the particle is confined to a range of radii (elliptical orbit). If instead
the particle energy is exactly at the minimum of the potential then there is
no range in radii accessible to the particle and its a circular orbit. If E2 is
such that there is a potential barrier at small r, but NOT at larger r then
this is an unbound hyperbolic orbit. If E2 > V 2

max then the particle can get
everywhere, even to r = 0 and hence it hits the black hole (and never comes
out!!)

Anyway, for a point of inflection there is no minimum. so this is NOT
a stable orbit. Its unstable - any small perturbation and the particle will
spiral in towards the black hole. r = 6m is the last stable orbit around a
Schwarzschild black hole. It is NOT where a particle would orbit around
at the speed of light - thats at r = 3m. There are orbits that are possible
between r − 6m and 3m but THEY ARE NOT STABLE. Gravity is just
stronger in GR than in Newtonian - the centrifugal barrier is simply not big
enough to hold up any more.

7 Time dilation in circular orbits

Then our metric simplifies a bit as dr = 0

ds2 = c2dτ 2 = c2(1 − 2m/r)dt2 − r2dφ2

so the Lagrangian is L = 1/2(c2(1 − 2m/r)ṫ2 − r2φ̇2) We can do the Euler
lagrange equations for r to get (see homework) mc2ṫ2 = r3φ̇2

so the COORDINATE time for one orbit is

mc2t2orb = r3(2π)2 torb = 2π(r3/GM)1/2

ie same as Newtonian except this is COORDINATE time, not proper time.
PROPER TIME measured by someone going round on this orbit (sub.

back into metric)

c2 = c2(1 − 2m/r)ṫ2 − r2φ̇2 = c2(1 − 2m/r)ṫ2 − r2mc2ṫ2/r3

1 = (1 − 3m/r)(dt/dτ)2

dτ = (1 − 3m/r)1/2dt
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τorb = (1 − 3m/r)1/2torb

So proper time goes to zero at r = 3m, and goes COMPLEX for r < 3m.
What does this MEAN physically ? it means that there are NO geodesic
circular orbits possible at r < 3m. This is very different to Newtonian
gravity where circular orbits are always possible. In Newtonian orbits you
can always balance gravity just by running round faster. In SR/GR you can
only run as fast as the speed of light. r = 3m is the orbit for going at the
speed of light. So there are no faster orbits. And if you were going around
on this orbit, then you wouldn’t age.

But this is different also to the proper time as experienced by someone
hovering at this radius r - held there by firing rockets (not on a geodesic). We
know how to relate proper time to coordinate time when we are stationary
- its simply the metric with no spatial parts as all the dr, dθ, dφ = 0 i.e.
dτ = (1 − 2m/r)1/2dt.

Suppose there are 2 spacecraft at r = 6m, one HOVERING, the other
orbiting. The proper time as measured for one orbit for the hovering craft is
τhov = (1−2m/r)1/2torb = (2/3)1/2torb while the proper time measured ON the
orbiting spacecraft is τorb = (1 − 3m/r)1/2torb = (1/2)1/2torb - the coordinate
time intervals are the same (see the gravitational redshift section). Then the
ratio of proper times is simply τorb/τhov = (1/2)1/2/(3/2)1/2 =

√
3/2 = 0.866.

The astronauts in the hovering probe see a LONGER elapsed time - they are
older than their companions who orbited.
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