13.7 lamb splitting

in the above we said that $2 p_{1 / 2}$ and $2 s_{1 / 2}$ had the same energy - but actually there IS a (very small - of order α^{5} ie factor 137 smaller than the fine structure) energy difference between $2 s_{1 / 2}$ and $2 p_{1 / 2}$ which comes from the Lamb shift (an interaction between the electron and the vacuum). it gives a difference between states of the same n, j but different l.

13.8 hyperfine splitting

but there is also hyperfine splitting which gives an energy shift of $E_{n, \text { hyperfine }}^{1} \propto$ $\alpha^{4} . m_{e} / m_{p}$ ie a factor 10 smaller even than the Lamb shift.

The proton itself has spin, \underline{S}_{p}, giving a magnetic dipole $\underline{\mu}_{p}=\frac{g_{p} e}{2 m_{p}} \underline{S}_{p}$ where $g_{p}=5.59$. In classical electrodynamics, a dipole sets up a magnetic field

$$
\underline{B_{p}}=\frac{\mu_{0}}{4 \pi r^{3}}\left[3\left(\underline{\mu_{p}} \cdot \underline{\hat{r}}\right) \underline{\hat{r}}-\underline{\mu_{p}}\right]+\frac{2 \mu_{0}}{3} \underline{\mu_{p}} \delta^{3}(\underline{r})
$$

The electron also has a magnetic dipole $\underline{\mu}_{e}=-\frac{g_{e}}{2 m_{e}} \underline{S}_{e}$, but $g_{e} \sim 2$ so $\underline{\mu}_{e}=$ $-\frac{e}{m_{e}} \underline{S}_{e}$ so there is an additional contribution to the potential $H^{\prime}=-\underline{\mu}_{e} \cdot \underline{B_{p}}$ from the interaction of this with the magnetic field induced from the proton spin.
if we can use our original wavefunctions, we'd get $E_{n l m}^{1}=<\psi_{n l m} \mid H^{\prime} \psi_{n l m}>$ and for states with $l=0$ so $m_{l}=0$ the radial dot product goes to zero due to spherical symmetry. so $E^{1} \propto \underline{S}_{e} \cdot \underline{S}_{p}$ In the same way that we used total angular momentum $\underline{J}=\underline{L}+\underline{S}_{e}$ we can use total spin $\underline{F}=\underline{S}_{e}+\underline{S}_{p}$ to get the energy shift and this is $5.877 \times 10^{-6} \mathrm{eV}$ which corresponds to 21 cm , perhaps the most famous line ever....

14 More on Formalism

14.1 Time evolution of expectation values

$$
\frac{d<Q>}{d t}=\frac{d}{d t}<\psi\left|Q \psi>=<\frac{\partial \psi}{\partial t}\right| Q \psi>+<\psi\left|\frac{\partial Q}{\partial t} \psi>+<\psi\right| Q \frac{\partial \psi}{\partial t}>
$$

But $H \psi=i \hbar \partial \psi / \partial t$ so $\partial \psi / \partial t=-i / \hbar H$ and $\partial \psi^{*} / \partial t=i / \hbar H$.

$$
\begin{aligned}
& \left.=<-\frac{i}{\hbar} H|Q \psi>+<\psi| \frac{\partial Q}{\partial t} \psi>+<\psi \right\rvert\, Q \frac{-i}{\hbar} H \psi> \\
& \left.=\frac{i}{\hbar}<H \psi|Q \psi>+<\psi| \frac{\partial Q}{\partial t} \psi>-\frac{i}{\hbar}<\psi \right\rvert\, Q H \psi> \\
& \left.=\frac{i}{\hbar}(<H \psi|Q \psi>-<\psi| Q H \psi>)+<\psi \right\rvert\, \frac{\partial Q}{\partial t} \psi>
\end{aligned}
$$

H is hermitian so $<H \psi|f>=<\psi| H f>$ so

$$
\begin{gathered}
\left.=\frac{i}{\hbar}(<\psi|H Q \psi>-<\psi| Q H \psi>)+<\psi \right\rvert\, \frac{\partial Q}{\partial t} \psi> \\
=\frac{i}{\hbar}<[H, Q]>+\left\langle\frac{\partial Q}{\partial t}\right\rangle
\end{gathered}
$$

14.2 Ehrenfest theorem (1st)

let $Q=x$ then

$$
\frac{d<x>}{d t}=\frac{i}{\hbar}<[H, x]>+\left\langle\frac{\partial Q}{\partial t}\right\rangle
$$

We saw that $[H, x]=-\frac{i \hbar}{m} p$, and we know that the operator (coordinate!) x has no dependence on coordinate t so $\partial x / \partial t=0$.

$$
\begin{aligned}
\frac{d<x>}{d t} & =\frac{i}{\hbar}<-i \hbar \frac{p}{m}> \\
& =\frac{<p>}{m}
\end{aligned}
$$

and we have indeed the link to classical physics we talked about earlier.
similarly we could prove the second one $d<p>/ d t=F=-<d V / d x\rangle$

14.3 Virial theorem

let $Q=x p$

$$
\frac{d<x p>}{d t}=\frac{i}{\hbar}<[H, x p]>+\left\langle\frac{\partial(x p)}{\partial t}\right\rangle
$$

again, we earlier showed that $[H, p]=i \hbar d V / d x$ so $[H, x p]=[H, x] p+$ $x[H, p]=-(i \hbar / m) p \cdot p+x . i \hbar d V / d x$.

$$
\begin{gathered}
=\frac{i}{\hbar}\langle-(i \hbar / m) p \cdot p+x \cdot i \hbar d V / d x\rangle+0 \\
=<p^{2} / m-x d V / d x>
\end{gathered}
$$

but in steady state $d / d x<x p>=0$ so $0=<p^{2} / m-x d V / d x>$ or $<$ $p^{2} / 2 m>=<T>=1 / 2<x d V / d x>$
so stationary states (energy eigenfunctions) should have $<T>=1 / 2 x d V / d x$. for the harmonic oscillartor $V=1 / 2 m \omega^{2} x^{2}$ so $d V / d x=m \omega^{2} x$ and $\langle T\rangle=$ $1 / 2\left\langle x m \omega^{2} x\right\rangle=1 / 2<m \omega^{2} x^{2}>=\langle V\rangle$
in general calculating $<T>$ is hard as its a second order differential operator, whereas calculating $\langle V\rangle$ is easier.

