Computational Physics Weekly Assessments
Week 2: Numerical Integration

Weekly assessment task & hints

1. Create a module, named ‘cp_2.py’

2. Implement a function ‘f(x)’ that returns x* sin(x). This is the function to be
integrated

3. Implement a function ‘g(x)’ that is the indefinite integral of f(x).
* This function is not meant to analytically integrate any expression, the idea is
that you find the indefinite integral from part 2 on paper and then type that in
as a function.

3. Create a function, ‘integrate_numeric (x0, x1, n_panels) > that calculates the
definite integral of the function £(x) over the interval [x0,x1] using Simpson’s
rule by splitting it up into n_panels.
* Every time you need to evaluate the function being integrated, call the
function f(x).

4. Create a function, ‘integrate_analytic(x0, x1)’ that uses an analytical
formula to integrate the function over the same interval.
* You may wish to use a CAS such as Wolfram Alpha to generate the analytical
expression.

5. Plot a graph of the percentage error in the numerical method vs the number of
panels used.

* Use a log/log plot — see the example code below.

* To determine the error, look at the fractional between the analytical and
numerical values as a percentage. Use the absolute of this (we don’t care
about the sign, just the magnitude.)

* [f the numerical value of the integral is area_n and the analytical value is area_a
then the error we wish to plOt IS error = abs (area_a-area n)/area_a

6. Answer a question on numerical differentiation
* The question is “What effect(s) does changing the number of panels used have
on the accuracy off the numerical method, and why?”
* Answer the question in no more than 60 words. Place the answer as a string

variable in the global scope off your code (i.e. not in a function). Call the
variable ANSWERI1

6. Answer another question on numerical differentiation
* The question is “If the trapezium rule was being used, how would the panel
count affect accuracy? Briefly explain your reasoning.”
* Answer the question in no more than 60 words. Place the answer as a string

variable in the global scope off your code (i.e. not in a function). Call the
variable ANSWER2

General comments:

Place the code for parts (5) and (6) above in the global scope
Place two variables at the start of the code,

o USER="your name”

o USER ID = “your CIS login”
Your module must run in order to be awarded any marks
Your solution should contain no more than about 35 lines of code and perhaps
10 lines of comments. Excessively long submissions will be penalised.
A partial example is shown below, using the function f(x) = x*>. Obviously
you need to change this to match part (2) above and actually implement the
area calculation for each panel.

O compphys_assessment_2.py
compphys_assessment_2.py » No Selection
from __future__ import division

import numpy
import matplotlib.pypleot as pyplot

USER = "David Levenson"
USER_ID = "eyed4x"
def f(x):

return X2

def compute_numeric_integral(x@, x1, n_panels):
panel_width = (x1-x@) / n_panels
area = @

for ix in range(n_panels):
Find the left edge of this panel
a = x0 + ix * panel_width
Do some maths
area = area + 777
return area

def compute_analytic_integral(x@, x1):
y0 = x@#%%x3/3
yl = x1#%3/3
return yl - y@

Range of panel sizes to be evaluated
PANEL_COUNTS = [4, 8, 16, 32, 64, 128, 256, 512, 1024]

Bounds to integrate
X8, X1 =0, 2

Evaluate error for various panel counts
y_data = []
ref = compute_analytic_integral(Xe, X1)

for n in PANEL_COUNTS:
s = compute_numeric_integral(@, 2, n)
error = abs((s-ref)/ref)
y_data.append(error)

pyplot.figure(figsize=(6,6))
pyplot.loglog()

Scatter plot of data points
pyplot.scatter(PANEL_COUNTS, y_data)
pyplot.show()

ANSWER1 = '"'I've got a cold'''

