
Computational Physics Weekly Assessments 
 
Week 5: Monte Carlo methods 
 
Weekly assessment task & hints 
This week you are going to produce a script that uses analytical, ODE and Monte- 
Carlo approaches to simulate the progression of a collection of atoms through part of 
their radioactive decay chain. We will look at the decay chain 225Ra > 225Ac >  221Fr.  
 
1. Create a module, named ‘cp_5.py’  

• As with previous weeks this will produce and display a single figure when run, 
illustrating your results. 

 
2. In the global scope of the module create the following variables: 
 
Variable name Value Description 
t_half_rad  20.8 Half life of 225Ra (days) 
t_half_act  10.0 Half life of 225Ac (days) 
N0 250 Initial number of 225Ra atoms 
t1 100 End time for simulation (days) 
n_time  50 Number of timepoints to solve to 

 
 

3. Analytically calculate the number of 225Ra atoms at each timepoint and plot 
this on your figure. 

 
4. Create a function simulate_monte_carlo(N0, t1, n_time) that simulates the 
decay of 225Ra atoms at n_time evenly spaced points between time 0 and time t1. 
The function should return a single 1d array representing the number of 255Ra 
atoms remaining at each time, count_rad.  
 

• Compute a variable, dt, which is the duration of a single timestep.  
• Compute a variable, p_decay_rad, which is the probability that a 225Ra atom 

will decay within dt. 
• Initialise a numpy array, atoms, to be a 1D array of numbers, one per atom. 

We will use this array to represent the state of each individual atom in our 
simulation. Initialise the array to be all ones;  a ‘1’ will represent a 225Ra atom, 
a ‘2’ will represent a 225Ac atom and a ‘3’ will represent a 221Fr atom.   

• Use a ‘for loop’ to go over each timepoint sequentially 
o For each timepoint, use another ‘for loop’ to examine every element in 

atoms. If an element is equal to ‘1’, it represents is a 225Ra atom. In 
this case use a suitable random number and the probability of decay 
within the timestep to decide if the atom decays within the timestep. If 
it does decay, set the element to now be ‘2’ representing 225Ac, the 
decay product.   

• Once the stochastic decay for the timestep has been applied to all atoms, count 
the number of 225Ra atoms remaining and store it in the correct timepoint in 
count_rad. The number of 225Ra atoms remaining is the number of elements 
in atoms with a value equal to ‘1’  

• Add this atom count vs time to your plot 



 
5. Refine your part 4 so that it now returns two arrays, ‘return (count_rad, 
count_act)’ that returns counts for each atom type vs time. 

• You will need to expand upon the code to decay atoms of type ‘1’ (Radium) 
and atoms of type ‘2’ (Actinium) using the appropriate decay probabilities. 

• Update your plot from part 4 to show both populations. 
 
6. Implement the differential equations for the decay of both atom types as a 
single function, f((N_rad, N_act), t) and solve this using scipy.integrate.odeint .  

• You should draw on your lecture notes and weekly problems from the last two 
 weeks for this.   

• Update your plot from part 5 to show both populations.   
• This part of the problem only requires about 6 additional lines of code.   

 
A comment on your figure: 

• This week you will be plotting many curves.  Ensure that you give sufficient 
thought to creating a plot that is clear, concise and informative. 

 
There is no question this week. 
 
General comments: 

• Place two variables at the start of the code,  
o USER=”your name” 
o USER_ID = “your CIS login” 

• Your module must run in order to be awarded any marks 
• Your solution should contain no more than about 60 lines of code and perhaps 

10 lines of comments.  Excessively long submissions may be penalised. 
• Sample code is on the next page 



 


