Computational Physics Weekly Assessments

Week 5: Monte Carlo methods

Weekly assessment task \& hints

This week you are going to produce a script that uses analytical, ODE and MonteCarlo approaches to simulate the progression of a collection of atoms through part of their radioactive decay chain. We will look at the decay chain ${ }^{225} \mathrm{Ra}>{ }^{225} \mathrm{Ac}>{ }^{221} \mathrm{Fr}$.

1. Create a module, named 'cp_5.py'

- As with previous weeks this will produce and display a single figure when run, illustrating your results.

2. In the global scope of the module create the following variables:

Variable name	Value	Description
t_half_rad	20.8	Half life of ${ }^{225} \mathrm{Ra}$ (days)
$t _$half_act	10.0	Half life of ${ }^{225} \mathrm{Ac}$ (days)
N 0	250	Initial number of ${ }^{225} \mathrm{Ra}$ atoms
t1	100	End time for simulation (days)
n time	50	Number of timepoints to solve to

3. Analytically calculate the number of ${ }^{225} \mathrm{Ra}$ atoms at each timepoint and plot this on your figure.
4. Create a function simulate_monte_carlo(N0, t1, n_time) that simulates the decay of ${ }^{225} \mathrm{Ra}$ atoms at n_{-}time evenly spaced points between time 0 and time $t 1$. The function should return a single 1d array representing the number of ${ }^{255} \mathrm{Ra}$ atoms remaining at each time, count_rad.

- Compute a variable, dt , which is the duration of a single timestep.
- Compute a variable, p_decay_rad, which is the probability that a ${ }^{225} \mathrm{Ra}$ atom will decay within dt.
- Initialise a numpy array, atoms, to be a 1D array of numbers, one per atom. We will use this array to represent the state of each individual atom in our simulation. Initialise the array to be all ones; a ' 1 ' will represent a ${ }^{225} \mathrm{Ra}$ atom, a ' 2 ' will represent a ${ }^{225} \mathrm{Ac}$ atom and a ' 3 ' will represent a ${ }^{221} \mathrm{Fr}$ atom.
- Use a 'for loop' to go over each timepoint sequentially
- For each timepoint, use another 'for loop' to examine every element in atoms. If an element is equal to ' 1 ', it represents is a ${ }^{225} \mathrm{Ra}$ atom. In this case use a suitable random number and the probability of decay within the timestep to decide if the atom decays within the timestep. If it does decay, set the element to now be ' 2 ' representing ${ }^{225} \mathrm{Ac}$, the decay product.
- Once the stochastic decay for the timestep has been applied to all atoms, count the number of ${ }^{225} \mathrm{Ra}$ atoms remaining and store it in the correct timepoint in count_rad. The number of ${ }^{225} \mathrm{Ra}$ atoms remaining is the number of elements in atoms with a value equal to ' 1 '
- Add this atom count vs time to your plot

5. Refine your part 4 so that it now returns two arrays, 'return (count_rad, count_act)' that returns counts for each atom type vs time.

- You will need to expand upon the code to decay atoms of type ' 1 ' (Radium) and atoms of type ' 2 ' (Actinium) using the appropriate decay probabilities.
- Update your plot from part 4 to show both populations.

6. Implement the differential equations for the decay of both atom types as a single function, $\mathbf{f}\left(\mathbf{N} _\right.$rad, \mathbf{N}_{-}act $)$, $\left.\mathbf{t}\right)$ and solve this using scipy.integrate.odeint .

- You should draw on your lecture notes and weekly problems from the last two weeks for this.
- Update your plot from part 5 to show both populations.
- This part of the problem only requires about 6 additional lines of code.

A comment on your figure:

- This week you will be plotting many curves. Ensure that you give sufficient thought to creating a plot that is clear, concise and informative.

There is no question this week.

General comments:

- Place two variables at the start of the code, - USER="your name"
- USER_ID = "your CIS login"
- Your module must run in order to be awarded any marks
- Your solution should contain no more than about 60 lines of code and perhaps 10 lines of comments. Excessively long submissions may be penalised.
- Sample code is on the next page

```
㗊
    from f
                p_1516_template_5.py \ No Selection
    from __
        _future_
            import division
    import numpy
    import random
    import matplotlib.pyplot as pyplot
    import scipy.integrate
    # -
    Dec
    #
    def analytic(N0, timebase):
    stuff = ... # some maths and timebase
    return stuff # stuff is an example of a bad variable name
    def monte_carlo_sim(N0, t1, n_timepoints):
        dt = ... # TODO
        count_radium = numpy.zeros((n_timepoints,))
        atoms = ??? # array of ones representing initial atom types
        # Calculate decay probability within a timestep
        p_decay_rad = ???
        for idx time in rangE(n timepoints): # loop over timepoints
            # Count and store number of 225Ac atoms
            count_radium[idx_time] = (atoms == 1).sum()
            for idx_atom in range(N0)
                ?? # Test for decay and decay if necessary
    return count_radium
    timebase = numpy.arange(... ) # TODO
    n_analytic = analytic(N0, timebase)
    n_rad = monte_carlo_sim(N0, t1, n_timepoints)
    pyplot.figure(
    # etc
    pyplot.show()
```

