
Computational Physics Weekly Assessment

Week 7: random walk

Weekly assessment task & hints

You will produce simulation of ‘Chemotaxis’, a modified random walk used by some
bacteria to find food sources. To briefly recap this week’s lecture notes, Chemotaxis
is a ‘run and tumble’ process in which a bacteria is either moving on a constant
bearing and speed, or is tumbling. A tumble lasts for a fixed time, and no motion
occurs during a tumble. After a tumble the bacteria travels at its constant speed along
a new, random bearing uncorrelated with the previous one.

You will be simulating this walk on a 2-dimensional surface where some energy
source such as sugar exists at a density specified by the function f(x,y) where:
f (x, y) = 4000− x 2 + y2() (the units for x and y are microns)

The bacteria modifies its random walk to make it more likely that it moves towards a
food source by relating the probability of a tumble occurring to the rate of change of
the energy field, such that it is less likely to tumble when travelling in a direction that
increases the energy density, and more likely to tumble when it is decreasing. Model
this by making the half-life (in seconds) of a run event proportional to the temporal

energy gradient seen by the bacteria: t1/2 =1+ k
df
dt

 where k is a constant defining the

sensitivity of the bacteria. You should ensure that large negative gradients do not
produce a negative half-life, but that the half-life never becomes smaller that 0.1s.

You cannot derive the rate of change of the energy field with time analytically, as this
is a quantity experience by the bacterium due to its random walk. The bacterium
constantly samples the energy density as it moves and uses a biological filter to
determine the rate of change with time. Simulate this system by sampling the current
energy density f(x,y) at every time point and build a record of f(x,y) against time. The
gradient is then calculated by comparing the current value with the appropriate
historic value from 1 second ago. An efficient implementation of this would use a
Python list as a shift-register as described in the lecture – thereby only keep a short
record of 1 sec duration.
df
dt
≈ f (x, y)

t=t
− f (x, y)

t=t−1

Assume that the bacterium moves at a constant speed of 2 microns/sec and that the
sensitivity, k, is 0.2. Assume that a tumble event lasts for 0.1 seconds.
Produce a function that simulates the motion of bacteria from a specified position (the
origin) over a series of equally spaced timesteps covering 100 seconds. The function
should return the trajectory of the bacteria.

Outputs:

Your code should illustrate the process of Chemotaxis on a matplotlib figure. Launch
many bacteria from the position (x=20,y=40), which is some distance from the
location of maximum energy density (0,0). Produce a figure with 3 subplots as shown
in the lecture slides

1. The top left graph should show the energy field as a 2D greyscale plot with 20
different bacteria tracks overlaid.

2. The top right graph should show a simplified trajectory with markers and only
the first and last points

3. The bottom graph should show the mean square displacement of the bacteria
against time. Plot two lines – one for the MSD from the bacteria’s origin and
one showing the MSD from the location of maximum energy.

You should also use the variable ANSWER1 to answer the question “What effect
does the sensitivity, k, have on the bulk behavior of the bacteria? Specifically
consider the cases where k is too big and where k is too small.”

Maths recap – the probability calculations you will need are the same as those for

radioactive decay. The “half life” of a run event is given by t1/2 =1+ k
df
dt ; this is

defined by the behavior of our bacterium. The mean lifetime of a run event is given
by τ = t1/2 ln(2) . Given the mean lifetime, you can calculate the probability of

not tumbling, Pnt, in an interval dt as Pnt = e
−dt/τ

Random numbers recap - there are many ways to get a random number as covered
in previous weeks; for example “random.random()” gives a number from a uniform
distribution between 0 and 1. This may be multiplied by a constant to re-scale it into
another range such as the range of angles that may occour after a tumble event.

Shift registers – a shift register is a storage element that contains a fixed number of
entries in a sequence. When a new entry is added, the oldest one is discarded. This
provides a convenient way to remember the energy levels experienced by the bacteria
over a second. One example is given below:

shift = [0, 0, 0, 0, 0, 0, …, 0] # Initial “pump priming” values; consider
if there is a better value than an energy of 0
for each timestep:
 r = … # Calculate new position
 eNew = f(r) # New energy level
 shift.append(eNew) # add to the python list
 shift = shift[-10:] # keep only the 10 most recent entries
 de = shift[-1] – shift[0] # [-1] is the newest entry, [0] is the
oldest
 t_half = … # some function of de/dt

Hints:

1. Think about what would be a suitable, and simple, timestep to implement.

2. Think carefully about how the half-life of a run event relates to the probability
 of tumbling (i.e. ending a run event) within one timestep. Consider the
 parallels to radioactive decay.

3. DEVELOP YOUR SOLUTION IN INCREMENTAL STAGES. It is suggested that you
start in the absence of an energy field and with a constant probability of
tumbling. Once this displays the expected behavior you can add energy
sensitivity. Likewise, start with simulating and plotting a single trajectory,
then add a for loop to generate and plot multiple simulations, before finally
collecting and analyzing the trajectories to determine the MSD.

4. See hint 3.
5. Think about how many bacteria to launch – you want to see the bulk statistical

behavior in the MSD, not individual effects. However, you don’t want the
simulation to take to long to run

General comments:

• Place two variables at the start of the code,
 o USER=”your name”
 o USER_ID = “your CIS login”
• Your module must run in order to be awarded any marks
• Your solution should contain no more than about 95 lines of code, comments

and whitespace. Excessively long submissions may loose marks.

