
L2 Computational Physics
Week 1 - Introduction

•  To view slide-by-slide animations in this PDF, do not view it in your web browser
•  Save it to disk
•  View “Full Screen”

•  Acrobat/Windows [CTRL+L]
•  “View / Enter Full Screen” in OS X/Previews
•  Move between pages with arrow keys

Lecture 1 Overview
�  What is…

�  a Computer?

�  Computational Physics?

�  Programming?

�  Course Information

�  Course Structure

�  Learning Outcomes

�  Weekly Assessments

�  Getting the most out of the lectures

�  General Background

�  Languages

�  Symbolic Maths

�  Speed

�  Accuracy

Week 1
Course Overview

What is a computer?
What is Computatuional

Physics?

“Calculator”

Antikythera mechanism
100 BC

Marty McFly’s
Calculator Watch

Babbage's difference engine

A programmable computer

Intel 4004
Babbage's Analytical Engine

A programmable computer

Intel 4004
Babbage's Analytical Engine

45 Years of the Microprocessor: Intel 4004 was 1971

4004 > 8008 > 8080 > 8086 > 80186 > 80286 > 80386 > 80486 >
 Pentium > PII > PIII > P4 > Core 2 > Core i3/5/7 > Xeon i5

Speed (Hz): 140,000 -> 4,600,000,000

Transistors 2,300 -> 5,500,000,000
Transistors * speed increased by 78,000,000,000

The Computer
�  Lots of maths

�  Controlled by logic
�  If something do this
�  Otherwise do that

�  The combination of a
mathematical calculator
with logic based flow control
is what makes a
programmable computer

�  Further reading
�  Universal Turing Machine

�  Von-Neumann architecture
Image credit: XKCD https://xkcd.com/210/

What is
 Computational

Physics?

Computational Physics is

Using numerical methods

 With a computer

 To solve physics problems

Everything we do in this course could be done with pen
and paper, just more slowly.

Computational Physics is not
�  Computer science

�  Mathematical basis behind computation
�  E.g. “Does this program ever finish”

�  Algorithm design
�  “Find the most efficient way of sorting these names”

�  Data structures
�  “How to store, index and retrieve patient records efficiently”

�  Programming
�  Just a tool, like your pocket calculator or Excel
�  We provide support throughout the course to help with this

What is Computational
Physics?

•  Any arbitrary system can be described in terms of equations
•  Ground state of a hydrogen atom
•  Orbital mechanics
•  Weather

•  Evaluating these equations allows us to simulate the system
•  It is through modelling / simulating many systems that we learn
•  Simulate a theory and compare to experiment – is the theory correct?

•  For anything but the simplest system, an analytical solution is not possible
•  2 body vs 3 body problem in gravitation
•  Ground state of hydrogen vs helium

•  Instead you have to solve the equations numerically

Programming…
�  This course is about numerical methods applied to

Physics

�  You will program a computer to do this

�  The combination of numerical methods and
programming is a key skill for many researchers in
Physics

Programming…

�  Hands Up time!
1.  Who has a qualification in Mathematics?

2.  Who has a qualification in Physics?
3.  Who has a qualification in Computer Programming?

�  Programming is a “great divide” amongst you –
massive variation in background compared to other
subjects

Programming…
�  With this in mind, I put a lot of effort into helping with the programming,

such as:

�  Relevant examples in the lectures

�  Type them in! Learn by doing and experimenting

�  Significant skeleton code in the weekly assessments

�  Read it, think about it, type it in

�  Model Solutions

�  Read them, compare them to yours

Getting More Help
�  If you are struggling with the programming:

�  Speak up! Ask at the end of the lectures. If you have a question,
others almost certainly do as well

�  I will hold informal Q&As for 5 minutes at the end of lectures.
Come down to the front and talk to me (we may have to move)

�  Talk to me and/or the other demonstrators in the workshops

�  Email me! If its easier to talk than write the email to explain the
issue then email me to arrange a separate meeting

�  I am happy to receive groups of people

Understanding
�  If you’re a crack expert at programming

�  Please remember that many people are not

�  This sets the pace of the course

�  Think about how to expand on the weekly
assessments, or ask me for suggestions

�  Remember: The course is about numerical
methods

�  Make use of the workshop sessions – come along
and ask the staff member to comment on your
work – there is always something to learn (and
we might spot a missing axis label!)

Course Information

Learning Outcomes
�  An understanding of numerical methods

�  Numerical methods for
�  Differentiation,
�  Integration
�  1st and 2nd order ODEs

�  Monte Carlo techniques, random walks
�  Function minimization and optimization
�  Fractals and Chaos

�  Developing skills
�  Familiarity with programming

�  Implementing things yourself
�  Using “off the shelf” code from scipy

�  Graphically presenting data

Weekly Assessments
•  Weekly assessments are issued for this course

–  Each problem takes the form of a small, simple Python
program

–  No more than a page of code

•  Problems are released on DUO

•  Submission is electronic through DUO

•  Your code will be printed out, marked and returned
through the normal weekly problem system

•  Read the style guide (on DUO)

Course Structure
�  1300 Friday Assessment released (duo)

�  1700 Monday, Tuesday, Thursday, Friday - Workshop
�  You attend one workshop/week

�  The workshop session is to provide you with help and
support for the associated weekly assessment

�  Start the problem before the workshop to benefit the most

�  READ THE SHEET ALL THE WAY THROUGH BEFORE START

�  1400 Monday the next week : Assessment deadline(duo)
�  Assessments are converted into hardcopy printouts which are

marked and returned through pigeon holes

Deadlines
�  1400 on Monday is a HARD DEADLINE

�  ZERO IF LATE!!!

�  How to avoid missing a deadline
�  Plan to finish your problem a day or two early
�  If you haven’t, submit your best efforts to date
�  Then submit your final version

�  If you miss the deadline, your earlier version will be
marked

�  Repeat submissions via DUO are allowed and will
automatically supersede your earlier submission(s)

Weekly problem marks
�  The precise division of marks varies from problem to

problem

�  General guidance:

10% Your file runs

40% Correctness of results

20% Answers to questions

10% Quality of your graph
 AXES LABELS! UNITS! CAPTION! LEGEND!

20% Quality of your code

Weekly problem marks
Check your work against the
“pre-flight” check-list on DUO
before submitting

Code quality

�  Follow the style guide

�  Comments
�  Sparingly but meaningfully

�  Variable names
�  Give them some meaning

�  “Paragraphs” - Use blank
lines sparingly to separate
code into paragraphs. E.g.
�  Beginning – imports, set up

�  Middle – doing the maths

�  End – plotting etc.

Graphs
�  Your graphs should be of suitable quality for a lab

report

�  Guidance is given in your assessment briefs

�  Do you want to know more?...
�  http://matplotlib.org/gallery.html

�  Caption pyplot.title(“…”)

�  Axes labels pyplot.xlabel, pyplot.ylabel

�  Legend pyplot.legend(“…”)

�  Figures in lab reports have captions, but as you do not
submit a report, yours should have a title – short and
descriptive

matplotlib gallery

Assessments: Don’t Panic
�  You will be given specific guidance and example

code each week READ IT AND FOLLOW STYLE

�  The workshop sessions exist to give you help with
both the programming and the mathematics/
physics embodied by the methods

�  Be prepared: Make the most of the workshop
sessions – try the problem in advance and come to
the workshop with questions

DUO : Laboratory Skills and Electronics (17 / 18) >
 Course Documents > Computational Physics

Style Guide
�  It’s on DUO

�  One page

�  Please read and follow it

�  It makes it easier for the
demonstrators to read your
code

�  We have to read 180
programs each week!

�  We do this so we can help
you and provide feedback

�  Help us help you

Getting the most out of lectures
�  You all have your own learning styles

�  What works for one person may not work for another

�  Full lecture notes go on DUO in advance of each lecture
�  Some of you may find it useful to go through these in advance

�  No need to take full notes

�  Think – will you benefit from making key point summary notes in the
lecture?

�  In some lectures I will describe a method on the whiteboard,
incrementally building up a figure as I describe the method

�  Think – will you benefit from building up a copy of the figure on paper as I
go?

Technical Background

Languages
�  A programming language is how humans interact

with computers

�  There are many types of language

�  There is a phenomenal variety in computer languages

�  The core concepts of most languages are very similar
– but with different names and syntax

Types of language
•  There are many paradigms

•  Many languages cannot be purely tagged with just
one…

•  Imperative/Procedural

•  Functional

•  Symbolic Maths

•  Logic

•  Many more

Imperative Languages

Imperative Languages
•  “how, not what”
•  Do this, then this, then this
•  You tell the computer how to solve a problem

•  ALGOL, COBOL, FORTRAN, C, C#, C++, BASIC,

Python, Pascal, JavaScript, JAVA, MATLAB, IDL,
Mathematica, Perl, …

•  This is the ‘de facto’ type of programming for

almost all of the physical sciences and the wider
software industry

•  Arguably it’s not the right way

Functional Languages

Functional Language
•  When you program in a functional language you define

–  Data
–  Mathematical functions that operate on the data

•  You never explicitly declare how to perform these functions

•  In theory this frees up the computer to decide on the best way of
actually manipulating the data

•  LISP, Haskel, Microsoft Excel, Mathematica, Python

•  Whilst functional languages have many benefits, in general they are
rarely seen in the wild – why?
–  Perhaps this is because they are a poor fit to how many people think
–  They are not well suited to producing stuff like Windows or Word or games

Python
About the Python programming Language

The Python language
�  Origins in the early 1990s

�  “Free, Open-Source”
�  No cost to buy or use it
�  The “Source Code” is freely available all

�  “High level language”
�  Very approximately : it’s easier to use but potentially

slower than, e.g. FORTRAN or C.
�  We will talk more about speed later

�  Widely adopted by the scientific community

Languages in Astronomy

http://astrofrog.github.io/blog/2013/10/02/acknowledging-tools-services-in-papers/

Symbolic Maths

Symbolic Math
•  Most languages perform numerical operations

(maths) on numbers stored in variables

•  'Symbolic Maths' or CAS (Computer Algebra Systems)
perform algebra on expressions and equations
defined in terms of symbols

Things to do with CAS
•  Integration

•  Differentiation

•  Factorisation

•  Limits

•  Equation solving

•  Many more

CAS Packages
•  CAS is one of those areas where $,$$$

packages still sell in large quantities

•  Mathematica, Maple, Mathcad, Magma

•  Also plenty of open source and free
packages
•  SAGE
•  SymPy (Symbolic maths in Python)
•  Plenty more

Pros Cons
•  Quick

•  A good CAS will know a lot
about algebra

•  Analytical solutions are
inherently more accurate than
numerical ones

•  Once you've learnt to use it...

•  Brain rot!

•  How did it get the answer?

•  Not everything can be solved
analytically and no amount of
software will fix that

•  Computer has no intuition

It’s all about the Journey
�  My personal philosophy:

�  The mathematical tools we learn are more than just a
means to an end

�  Use of CAS hides the calculations, you just get a result

�  It is by journeying through the calculations that we come to
understand the relationship between mathematics and
physics, it is how we come to really understand physics

�  Learn to travel by yourself, enjoy the journey and use CAS
to check that you’ve ended up in the right place

Example 1

Example 2 - sympy

∫=)sin(.2 xxy

•  We want to compute the indefinite integral of

•  Then we want the definite integral

Example 2 - sympy
We have to create a symbol to manipulate

Example 2 - sympy
Perform the integration

Note that we have to use sympy’s own version of mathematical
operations – it knows how to symbolically manipulate these

Example 2 - sympy
We can evaluate the definite integral between two limits

Sympy continues to work with symbols - e.g. cos(2)

Example 2 - sympy
We ask sympy to evaluate all symbols

GIGO

GIGO: Garbage In, Garbage Out

•  Your model is only as accurate as the data you put in to it
–  Initial state
–  Boundary conditions
–  Physical constants
–  Assumptions

•  Remember this when debugging code
–  Perhaps the problem lies with the input data not the code

•  The importance of test cases!

•  Garbage In, Gospel Out
–  Do not trust the output of a large numerical model just because

the model is 1,000,000 lines of code running on a 1024 CPU
supercomputer

Charles Babbage On GIGO
On two occasions I have been asked,

"Pray, Mr Babbage, if you put into the machine
wrong figures, will the right answers come out?”

I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a
question.

Accuracy
�  Try entering these numbers at the Python prompt

�  1e15 = 1,000,000,000,000,000

�  1e15 + 1 = 1,000,000,000,000,001

�  1e16 = 10,000,000,000,000,000

�  1e16 + 1 = 10,000,000,000,000,000

�  Eh?

Floating Point
•  A computer can only store a real number to

a finite precision – ultimately because it has
finite storage!

•  The standard way of doing this is 'floating
point' – a number is stored as the binary
equivalent of 1.23456 x 104 for example

Floating Point
•  Python normally be built using IEEE 754

standard double precision floating point

•  These use 53 bits for the mantissa
1.23456 (mantissa) x 104 (exponent)

•  This means a maximum precision of around
1:1016 is possible

•  53 bits can store a range of 253

•  log10(253)=15.95

Fractions
•  Many fractional

numbers cannot be
accurately represented
in binary floating point
(or in decimal for that
matter)

Fractions

•  Many languages and

environments hide this
by carefully displaying
numbers

•  Python chooses to

display the details when
used interactively, and
to format more carefully
when printing!

Rounding errors
•  This also manifests in rounding errors

•  This is a tiny error of 1:1016

–  Equivalent to a 4nm high bump on the Earth
–  But a very big problem if not understood

Do not test FP numbers for
equality

•  Often floating point numbers are not exactly equal
–  Due to rounding errors
–  Rounding errors depend on the sequence of

calculations

Do not test FP numbers for
equality

•  Can you use an index variable for your test instead?
•  Or a magnitude comparison (is a > b etc.)
•  Otherwise compare to a small number that is greater

than rounding error

What’s Ahead?
1. Finite differences

2. Numerical integration – Rectangle rule,
Trapezium rule, Simpson's rule

3. 1st order ODEs, Euler, RK, predictor-
corrector

4. 2nd order ODEs, Euler-Cromer, black box
solvers

5. Monte Carlo methods

What’s Ahead?
6.  Minimization

7.  Random Walks

8.  Fractals and Chaos

9.  Wrap up and moving forwards

Taylor Series
Recap from Level 1

 MATH156(7)1: SINGLE MATHEMATICS A(B)
MATH1061: Calculus and Probability I

Taylor Series
�  Approximation for a function f(x) near a point x=x0

�  Expand as power series in h

�  f(x0+h)=a0 + a1 h + a2 h2 + a3 h3 + …

�  h=0 gives f(x0)=a0

�  differentiate

�  f’(x0+h)= a1 + 2 a2 h + 3 a3 h2 + …

�  h=0 gives f’(x0)= a1

 an=fn(x0)/n!

Taylor Series
�  Approximation for a function f(x) near a point x=x0

�  Defined in terms of the derivatives of f(x) at a

�  NB:

f '(x) = f (1)(x) = df (x)

dx

f (n) (x) = dn f (x)
dxn

0!=1

f (x0 + dx) = f (x0)+
f '(x0)
1!

dx + f ''(x0)
2!

dx2 +...

f (x0 + dx) = f (i) (x0)dx
i

i=0

∞

∑ / n!

Taylor Series: Example
�  Approximate sin(x0+dx) at x0=0

Taylor Series: Example
�  Approximate sin(x0+dx) at x0=0

sin(x) ≈ x − x
3

3!
+
x5

5!
−
x7

7!
+...

Taylor Series - applications
�  The Taylor series is

one of the ways a
computer
calculates sin/cos
etc.

Finite Difference Method
A numerical method to approximate the derivative of a function

Finite Difference Method
�  Discarding higher order terms from Taylor series:

�  Re-arrange to approximate 1st derivative (gradient)

f (x + dx) ≈ f (x)+ f '(x)dx

f '(x) ≈ f (x + dx)− f (x)
dx

Classes of Method
�  Forwards difference

�  Backwards difference

�  Central difference

f '(x) ≈ f (x + dx)− f (x)
dx

f '(x) ≈ f (x)− f (x − dx)
dx

f '(x) ≈ f (x + dx / 2)− f (x − dx / 2)
dx

Questions to ponder…
�  Taylor series
� Does this method apply to all types of

function?

�  Finite difference
� Which method(s) is most accurate?
� Which method(s) is fastest to compute?
� Are all methods equally useful?
� How do you extend this to measure 2nd

derivative?
� What happens on a computer for dx << 1?

