L2 Computational Physics Week 1 - Introduction

- To view slide-by-slide animations in this PDF, do not view it in your web browser
- Save it to disk
- View "Full Screen"
- Acrobat/Windows [CTRL+L]
- "View / Enter Full Screen" in OS X/Previews
- Move between pages with arrow keys

Lecture 1 Overview

- What is...
- a Computer?
- Computational Physics?
- Programming?
- Course Information
- Course Structure
- Learning Outcomes
- Weekly Assessments
- Getting the most out of the lectures
- General Background
- Languages
- Symbolic Maths
- Speed
- Accuracy

Week 1

Course Overview

What is a computer? What is Computatuional Physics?

"Calculator"

A programmable computer

A programmable computer

45 Years of the Microprocessor: Intel 4004 was 1971
$4004>8008>8080>8086>80186>80286>80386>80486>$
Pentium $>$ PII $>$ PIII $>$ P4 $>$ Core $2>$ Core i3/5/7> Xeon i5
Speed (Hz): 140,000 -> 4,600,000,000 Transistors 2,300 -> 5,500,000,000 Transistors * speed increased by $78,000,000,000$

The Computer

- Lots of maths
- Controlled by logic
- If something do this
- Otherwise do that
- The combination of a mathematical calculator with logic based flow control is what makes a programmable computer
- Further reading
- Universal Turing Machine
- Von-Neumann architecture

What is
 Computational Physics?

Computational Physics is

Using numerical methods

With a computer
To solve physics problems

Everything we do in this course could be done with pen and paper, just more slowly.

Computational Physics is not

- Computer science
- Mathematical basis behind computation
- E.g. "Does this program ever finish"
- Algorithm design
- "Find the most efficient way of sorting these names"
- Data structures
- "How to store, index and retrieve patient records efficiently"
- Programming
- Just a tool, like your pocket calculator or Excel
- We provide support throughout the course to help with this

What is Computational Physics?

- Any arbitrary system can be described in terms of equations
- Ground state of a hydrogen atom
- Orbital mechanics
- Weather
- Evaluating these equations allows us to simulate the system
- It is through modelling / simulating many systems that we learn
- Simulate a theory and compare to experiment - is the theory correct?
- For anything but the simplest system, an analytical solution is not possible - 2 body vs 3 body problem in gravitation
- Ground state of hydrogen vs helium
- Instead you have to solve the equations numerically

Programming...

- This course is about numerical methods applied to Physics
- You will program a computer to do this
- The combination of numerical methods and programming is a key skill for many researchers in Physics

Programming...

- Hands Up time!

1. Who has a qualification in Mathematics?
2. Who has a qualification in Physics?
3. Who has a qualification in Computer Programming?

- Programming is a "great divide" amongst you massive variation in background compared to other subjects

Programming...

- With this in mind, I put a lot of effort into helping with the programming, such as:
- Relevant examples in the lectures
- Type them in! Learn by doing and experimenting
- Significant skeleton code in the weekly assessments
- Read it, think about it, type it in
- Model Solutions
- Read them, compare them to yours

Getting More Help

- If you are struggling with the programming:
- Speak up! Ask at the end of the lectures. If you have a question, others almost certainly do as well
- I will hold informal Q\&As for 5 minutes at the end of lectures. Come down to the front and talk to me (we may have to move)
- Talk to me and/or the other demonstrators in the workshops
- Email me! If its easier to talk than write the email to explain the issue then email me to arrange a separate meeting
- I am happy to receive groups of people

Understanding

- If you're a crack expert at programming
- Please remember that many people are not
- This sets the pace of the course
- Think about how to expand on the weekly assessments, or ask me for suggestions
- Remember: The course is about numerical methods
- Make use of the workshop sessions - come along and ask the staff member to comment on your work - there is always something to learn (and we might spot a missing axis label!)

Course Information

Learning Outcomes

- An understanding of numerical methods
- Numerical methods for
- Differentiation,
- Integration
- $1^{\text {st }}$ and $2^{\text {nd }}$ order ODEs
- Monte Carlo techniques, random walks
- Function minimization and optimization
- Fractals and Chaos
- Developing skills
- Familiarity with programming
- Implementing things yourself
- Using "off the shelf" code from scipy
- Graphically presenting data

Weekly Assessments

- Weekly assessments are issued for this course
- Each problem takes the form of a small, simple Python program
- No more than a page of code
- Problems are released on DUO
- Submission is electronic through DUO
- Your code will be printed out, marked and returned through the normal weekly problem system
- Read the style guide (on DUO)

Course Structure

- 1300 Friday Assessment released (duo)
- 1700 Monday, Tuesday, Thursday, Friday - Workshop
- You attend one workshop/week
- The workshop session is to provide you with help and support for the associated weekly assessment
- Start the problem before the workshop to benefit the most
- READ THE SHEET ALL THE WAY THROUGH BEFORE START
- 1400 Monday the next week: Assessment deadline(duo)
- Assessments are converted into hardcopy printouts which are marked and returned through pigeon holes

Deadlines

- 1400 on Monday is a HARD DEADLINE
- ZERO IF LATE!!!
- How to avoid missing a deadline
- Plan to finish your problem a day or two early
- If you haven't, submit your best efforts to date
- Then submit your final version
- If you miss the deadline, your earlier version will be marked
- Repeat submissions via DUO are allowed and will automatically supersede your earlier submission(s)

Weekly problem marks

- The precise division of marks varies from problem to problem
- General guidance:
10%
Your file runs
40\%
Correctness of results
20\% Answers to questions
10%
Quality of your graph
AXES LABELS! UNITS! CAPTION! LEGEND!
20\% Quality of your code

Weekly problem marks

Check your work against the "pre-flight" check-list on DUO before submitting

L2/L3 Computational Physics 2014-2015

Pre-marking checklist

Open your file in an editor (e.g. IDLE) and look at the source code:
CHECK: Does your submission contain your name and CIS ID?
CHECK: Do you answer all questions asked in the assignment?
CHECK: Do you use meaningful variable names (e.g. "ix" and "iy" for index variables in 2 dimensions (xy), as opposed to " i " and " j ")?

From the terminal, change in to the folder containing your script, type:
"python myScript.py" where "myScript. py" is the name of your work, and press enter. Always check after even the most minor edit, in case you inadvertently broke something.

CHECK: Does your script run?
CHECK: Does a single graph appear?
CHECK: Do both graph axes have labels?
CHECK: Do axes labels include units where appropriate?
CHECK: Does the graph need a legend?

Code quality

- Follow the style guide
- Comments
- Sparingly but meaningfully
- Variable names
- Give them some meaning
- "Paragraphs" - Use blank lines sparingly to separate code into paragraphs. E.g.
- Beginning - imports, set up
- Middle - doing the maths
- End - plotting etc.

Graphs

- Your graphs should be of suitable quality for a lab report
- Guidance is given in your assessment briefs
- Do you want to know more?...
- http://matplotlib.org/gallery.html
- Caption
- Axes labels
- Legend
- Figures in lab reports have captions, but as you do not submit a report, yours should have a title - short and descriptive

matplotlib gallery

Assessments: Don’t Panic

- You will be given specific guidance and example code each week READ IT AND FOLLOW STYLE
- The workshop sessions exist to give you help with both the programming and the mathematics/ physics embodied by the methods
- Be prepared: Make the most of the workshop sessions - try the problem in advance and come to the workshop with questions

DUO : Laboratory Skills and Electronics (17 / 18) > Course Documents > Computational Physics

Style Guide

Ө ○ ○ CompPhysStyleGuide1314（1 page） Q Q M A：：回回四图》

L2 Computational Physics Style Giide

Purpose of this gride－dis document presents a series of rales that you re expocted io
 you with ussefal feedsack．

＞＞print＂Bello world

 Treammented However you should ensure your code still works on the C

 alto avilibbe at the command prompt with the command＂python＂
Rule 2 －Enabling foating point division．Always sus the struerm

\ggg print $1 / 2$ \＆Defaule integer division

＞＞inport numpy

－It＇s on DUO
－One page
－Please read and follow it
－It makes it easier for the demonstrators to read your code
－We have to read 180 programs each week！
－We do this so we can help you and provide feedback
－Help us help you

Getting the most out of lectures

- You all have your own learning styles
- What works for one person may not work for another
- Full lecture notes go on DUO in advance of each lecture
- Some of you may find it useful to go through these in advance
- No need to take full notes
- Think - will you benefit from making key point summary notes in the lecture?
- In some lectures I will describe a method on the whiteboard, incrementally building up a figure as I describe the method
- Think - will you benefit from building up a copy of the figure on paper as I go?

Technical Background

Languages

- A programming language is how humans interact with computers
- There are many types of language
- There is a phenomenal variety in computer languages
- The core concepts of most languages are very similar - but with different names and syntax

Types of Ianguage

- There are many paradigms
- Many languages cannot be purely tagged with just one...
- Imperative/Procedural
- Functional
- Symbolic Maths
- Logic
- Many more

Imperative Languages

Imperative Languages

- "how, not what"
- Do this, then this, then this
- You tell the computer how to solve a problem
- ALGOL, COBOL, FORTRAN, C, C\#, C++, BASIC, Python, Pascal, JavaScript, JAVA, MATLAB, IDL, Mathematica, Perl, ...
- This is the 'de facto' type of programming for almost all of the physical sciences and the wider software industry
- Arguably it’s not the right way

Functional Languages

Functional Language

- When you program in a functional language you define
- Data
- Mathematical functions that operate on the data
- You never explicitly declare how to perform these functions
- In theory this frees up the computer to decide on the best way of actually manipulating the data
- LISP, Haskel, Microsoft Excel, Mathematica,
- Whilst functional languages have many benefits, in general they are rarely seen in the wild - why?
- Perhaps this is because they are a poor fit to how many people think
- They are not well suited to producing stuff like Windows or Word or games

Python

About the Python programming Language

The Python Ianguage

- Origins in the early 1990s
- "Free, Open-Source"
- No cost to buy or use it
- The "Source Code" is freely available all
- "High level language"
- Very approximately : it's easier to use but potentially slower than, e.g. FORTRAN or C.
- We will talk more about speed later
- Widely adopted by the scientific community

Languages in Astronomy

http://astrofrog.github.io/blog/2013/10/02/acknowledging-tools-services-in-papers/

Symbolic Maths

Symbolic Math

- Most languages perform numerical operations (maths) on numbers stored in variables
- 'Symbolic Maths' or CAS (Computer Algebra Systems) perform algebra on expressions and equations defined in terms of symbols

Things to do with CAS

Integration
Differentiation
Factorisation
Limits
Equation solving
Many more

CAS Packages

- CAS is one of those areas where $\$, \$ \$ \$$ packages still sell in large quantities
- Mathematica, Maple, Mathcad, Magma
- Also plenty of open source and free packages
- SAGE
- SymPy (Symbolic maths in Python)
- Plenty more

Pros

- Quick
- A good CAS will know a lot about algebra
- Analytical solutions are inherently more accurate than numerical ones

Cons

- Once you've learnt to use it...
- Brain rot!
- How did it get the answer?
- Not everything can be solved analytically and no amount of software will fix that
- Computer has no intuition

It's all about the Journey

- My personal philosophy:
- The mathematical tools we learn are more than just a means to an end
- Use of CAS hides the calculations, you just get a result
- It is by journeying through the calculations that we come to understand the relationship between mathematics and physics, it is how we come to really understand physics
- Learn to travel by yourself, enjoy the journey and use CAS to check that you've ended up in the right place

Example 1

Assuming "log" is the natural logarithm | Use the base 10 logarithm instead

Derivative:

$$
\frac{d}{d x}\left(\frac{x \log (x)}{\cos (x)}\right)=\sec (x)+\log (x) \sec (x)+x \log (x) \tan (x) \sec (x)
$$

$\log (x)$ is the natural logarithm * $\sec (x)$ is the secant function $\%$

Plots:

(x from -30 to 30)

- real part
- imaginary part

Alternate forms:

$$
\begin{aligned}
& \sec (x)(\log (x)+x \log (x) \tan (x)+1) \\
& \sec ^{2}(x)(x \log (x) \sin (x)+(\log (x)+1) \cos (x)) \\
& \frac{2}{\boldsymbol{e}^{-i x}+\boldsymbol{e}^{i x}}+\frac{2 i \boldsymbol{e}^{-i x} x \log (x)}{\left(\boldsymbol{e}^{-i x}+\boldsymbol{e}^{i x}\right)^{2}}-\frac{2 i \boldsymbol{e}^{i x} x \log (x)}{\left(\boldsymbol{e}^{-i x}+\boldsymbol{e}^{i x}\right)^{2}}+\frac{2 \log (x)}{\boldsymbol{e}^{-i x}+\boldsymbol{e}^{i x}}
\end{aligned}
$$

Example 2 - sympy

- We want to compute the indefinite integral of

$$
y=\int x^{2} \cdot \sin (x)
$$

- Then we want the definite integral

Example 2 - sympy

We have to create a symbol to manipulate

```
*Python Shell*
-[\square]|
Eile Edit Shell Debug Options Windows Help
```

```
>>> import sympy
```

>>> import sympy
>>> \# we have to explicitly declare our symbols
>>> \# we have to explicitly declare our symbols
>>> x = sympy.Symbol('x')
>>> x = sympy.Symbol('x')
>>> \# Integrate the function sin(x) * x**2
>>> \# Integrate the function sin(x) * x**2
>>> sympy.integrate(sympy.sin(x) * x**2)
>>> sympy.integrate(sympy.sin(x) * x**2)
2*}\operatorname{cos}(x) - x**2*cos(x) + 2****in(x
2*}\operatorname{cos}(x) - x**2*cos(x) + 2****in(x
>>> \# Evaluate the integral over some range
>>> \# Evaluate the integral over some range
>>> sympy.integrate(sympy.sin(x) \# x**2, (x, 0, 2))
>>> sympy.integrate(sympy.sin(x) \# x**2, (x, 0, 2))
-2 - 2*}\operatorname{cos(2) + 4*sin(2)
-2 - 2*}\operatorname{cos(2) + 4*sin(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> \# instead of an approximate value. use evalf to get the value
>>> \# instead of an approximate value. use evalf to get the value
>>>y = sympy.integrate(sympy.sin(x) \# (x*\#2, (x, 0, 2))
>>>y = sympy.integrate(sympy.sin(x) \# (x*\#2, (x, 0, 2))
>>> y.evalf()
>>> y.evalf()
2.46948338039701
2.46948338039701

Example 2 - sympy

Perform the integration

Note that we have to use sympy's own version of mathematical operations - it knows how to symbolically manipulate these

```
*Python Shell*:
File Edit Shell Debug Options Windows Help
```

>>> import sumpy

```
>>> import sumpy
```

>>> import sumpy
>>> \# we have to explicitly declare our symbols
>>> \# we have to explicitly declare our symbols
>>> \# we have to explicitly declare our symbols
>>> x = sympy.Symbol('x')
>>> x = sympy.Symbol('x')
>>> x = sympy.Symbol('x')
>>> \# Integrate the function sin(x) * x**2
>>> \# Integrate the function sin(x) * x**2
>>> \# Integrate the function sin(x) * x**2
>> sympy.integrate sympy.sin(x) * x**2)
>> sympy.integrate sympy.sin(x) * x**2)
>> sympy.integrate sympy.sin(x) * x**2)
2*}\operatorname{cos}(x)-x**2*\operatorname{cos}(x)+2***Sin(x
2*}\operatorname{cos}(x)-x**2*\operatorname{cos}(x)+2***Sin(x
2*}\operatorname{cos}(x)-x**2*\operatorname{cos}(x)+2***Sin(x
>>> \# Evaluate the integral over some range
>>> \# Evaluate the integral over some range
>>> \# Evaluate the integral over some range
>> sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>> sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>> sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
-2 - 2*}\operatorname{cos(2) + 4*}\operatorname{sin}(2
-2 - 2*}\operatorname{cos(2) + 4*}\operatorname{sin}(2
-2 - 2*}\operatorname{cos(2) + 4*}\operatorname{sin}(2
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> \# instead of an approximate value. use evalf to get the value
>>> \# instead of an approximate value. use evalf to get the value
>>> \# instead of an approximate value. use evalf to get the value
>>> y = sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>>> y = sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>>> y = sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>>> y.evalf()
>>> y.evalf()
>>> y.evalf()
2.46948338039701

```
2.46948338039701
```

2.46948338039701

```
```

>>> 2*\operatorname{cos(2) + 4*sin(2)}

```
```

>>> 2*\operatorname{cos(2) + 4*sin(2)}

```
```

>>> 2*\operatorname{cos(2) + 4*sin(2)}

```

\section*{Example 2 - sympy}

We can evaluate the definite integral between two limits Sympy continues to work with symbols -e.g. \(\cos (2)\)
```

Python Shell
Eile Edit Shell Debug Options Windows Help
>>> import sympy
>>> \# we have to explicitly declare our symbols
>>> x = sympy.Symbol('x')
>>> \# Integrate the function sin(x) * x**Z
>>> sympy.integrate(syrmpy.sin(x) * x**2)
2*}\operatorname{cos}(x) - (x**2*\operatorname{cos(x) + 2*x*}\operatorname{sin}(x
>>> \# Evaluate the integral over some range
>>> sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
-2 - 2*}\operatorname{cos(2) + 4*sin(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>>> instead of an approximate value. use evalf to get the value
>>> y = sympy.integrate(sympy.sin(x) \# x**2, (x, 0, 2))
>>> Y.evalf()
2.46948338039701

```
- 미 \(x\)

\section*{Example 2 - sympy}

\section*{We ask sympy to evaluate all symbols}
```

Python Shell
File Edit Shell Debug Options Wwindows Help
>>> import sympy
>>> \# we have to explicitly declare our symbols
>>> x = sympy.Symbol('x')
>>> \# Integrate the function sin(x) * x**2
>>> sympy.integrate(sympy.sin(x) * x**2)
2*}\operatorname{cos}(x) - x**2**os(x) + 2*x*sin(x
>>> \# Evaluate the integral over some range
>>> sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
-2 - 2*}\operatorname{cos(2) + 4*sin(2)
>>> \# sympy tries to maintain accuracy by retaining cos(2)
>> \# instead of an approximate value. use evalf to get the value
>>> y = sympy.integrate(sympy.sin(x) * x**2, (x, 0, 2))
>>> y.evalf(!
2.46948338039701

```

GIGO

\section*{GIGO: Garbage In, Garbage Out}
- Your model is only as accurate as the data you put in to it
- Initial state
- Boundary conditions
- Physical constants
- Assumptions
- Remember this when debugging code
- Perhaps the problem lies with the input data not the code
- The importance of test cases!
- Garbage In, Gospel Out
- Do not trust the output of a large numerical model just because the model is 1,000,000 lines of code running on a 1024 CPU supercomputer

\section*{Charles Babbage On GIGO}

On two occasions I have been asked,
"Pray, Mr Babbage, if you put into the machine wrong figures, will the right answers come out?"

I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.

\section*{Accuracy}
- Try entering these numbers at the Python prompt
- 1 e 15
- \(1 \mathrm{e} 15+1\)
- 1e16
- \(1 \mathrm{e} 16+1\)
= 10,000,000,000,000,000
- Eh?

\section*{Floating Point}
- A computer can only store a real number to a finite precision - ultimately because it has finite storage!
- The standard way of doing this is 'floating point' - a number is stored as the binary equivalent of \(1.23456 \times 10^{4}\) for example

\section*{Floating Point}
- Python normally be built using IEEE 754 standard double precision floating point
- These use 53 bits for the mantissa 1.23456 (mantissa) \(\times 10^{4}\) (exponent)
- This means a maximum precision of around 1:10 \({ }^{16}\) is possible
- 53 bits can store a range of \(2^{53}\)
- \(\log _{10}\left(2^{53}\right)=15.95\)

\section*{Fractions}
- Many fractional numbers cannot be accurately represented in binary floating point (or in decimal for that matter)


\section*{Fractions}
- Many languages and environments hide this by carefully displaying numbers
- Python chooses to display the details when used interactively, and to format more carefully when printing!

\section*{Rounding errors}
- This also manifests in rounding errors

- This is a tiny error of \(1: 10^{16}\)
- Equivalent to a 4nm high bump on the Earth
- But a very big problem if not understood

\title{
Do not test FP numbers for equality
}
- Often floating point numbers are not exactly equal - Due to rounding errors
- Rounding errors depend on the sequence of calculations
```

7**Untitled*
-|\square\x
File Edit Format Run Options Windows Help
>>> a = 1.0
>> b=0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1
>>> a
1.0
>>b
0.99999999999999989
>> a == b
False
>>> eps = 1e-10
>>> abs(a-b) < eps
True
>>>

Do not test FP numbers for equality

- Can you use an index variable for your test instead?
- Or a magnitude comparison (is a $>\mathrm{b}$ etc.)
- Otherwise compare to a small number that is greater than rounding error

What's Ahead?

1.Finite differences
2. Numerical integration - Rectangle rule, Trapezium rule, Simpson's rule
$3.1^{\text {st }}$ order ODEs, Euler, RK, predictorcorrector
$4.2^{\text {nd }}$ order ODEs, Euler-Cromer, black box solvers
5. Monte Carlo methods

What's Ahead?

6. Minimization
7. Random Walks
8. Fractals and Chaos
9. Wrap up and moving forwards

Taylor Series

Recap from Level 1

MATH156(7)1: SINGLE MATHEMATICS A(B)
MATH1061: Calculus and Probability I

Taylor Series

- Approximation for a function $f(x)$ near a point $x=x_{0}$
- Expand as power series in h

$$
\begin{aligned}
& f\left(x_{0}+h\right)=a_{0}+a_{1} h+a_{2} h^{2}+a_{3} h^{3}+\ldots \\
& h=0 \text { gives } f\left(x_{0}\right)=a 0 \\
& \text { differentiate } \\
& f^{\prime}\left(x_{0}+h\right)=a_{1}+2 a_{2} h+3 a_{3} h^{2}+\ldots \\
& h=0 \text { gives } f^{\prime}\left(x_{0}\right)=a_{1} \\
& a_{n}=f n\left(x_{0}\right) / n!
\end{aligned}
$$

Taylor Series

- Approximation for a function $f(x)$ near a point $x=x_{0}$
- Defined in terms of the derivatives of $f(x)$ at a

$$
f\left(x_{0}+d x\right)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} d x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} d x^{2}+\ldots
$$

- NB: $f\left(x_{0}+d x\right)=\sum_{i=0}^{\infty} f^{(i)}\left(x_{0}\right) d x^{i} / n!$

$$
\begin{aligned}
& f^{\prime}(x)=f^{(1)}(x)=\frac{d f(x)}{d x} \\
& f^{(n)}(x)=\frac{d^{n} f(x)}{d x^{n}} \\
& 0!=1
\end{aligned}
$$

Taylor Series: Example

- Approximate $\sin \left(x_{0}+d x\right)$ at $x_{0}=0$

Taylor Series: Example

- Approximate $\sin \left(x_{0}+d x\right)$ at $x_{0}=0$
$\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$

Taylor Series - applications

- The Taylor series is one of the ways a computer calculates $\sin /$ cos etc.

Finite Difference Method

A numerical method to approximate the derivative of a function

Finite Difference Method

- Discarding higher order terms from Taylor series:

$$
f(x+d x) \approx f(x)+f^{\prime}(x) d x
$$

- Re-arrange to approximate $1^{\text {st }}$ derivative (gradient)

$$
f^{\prime}(x) \approx \frac{f(x+d x)-f(x)}{d x}
$$

Classes of Method

- Forwards difference

$$
f^{\prime}(x) \approx \frac{f(x+d x)-f(x)}{d x}
$$

- Backwards difference
- Central difference

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-d x)}{d x}
$$

$$
f^{\prime}(x) \approx \frac{f(x+d x / 2)-f(x-d x / 2)}{d x}
$$

Questions to ponder...

- Taylor series
- Does this method apply to all types of function?
- Finite difference
- Which method(s) is most accurate?
- Which method(s) is fastest to compute?
- Are all methods equally useful?
- How do you extend this to measure $2^{\text {nd }}$ derivative?
- What happens on a computer for $\mathrm{dx} \ll 1$?

