L2 Computational Physics
Week 1 - Introduction

» To view slide-by-slide animations in this PDF, do not view it in your web browser
+ Save it to disk
* View “Full Screen”
» Acrobat/Windows [CTRL+L]
* “View / Enter Full Screen” in OS X/Previews
* Move between pages with arrow keys

Lecture 1 Overview

What is...

e a Computer?

e Computational Physics?
® Programming?

Course Information

® (Course Structure

® |earning Outcomes

® \Weekly Assessments

® (etting the most out of the lectures

General Background
® |[anguages

e Symbolic Maths
® Speed

® Accuracy

Week 1

Course Overview

What is a computer?
What is Computatuional
Physics?

“Calculator”

=l dE=E=

"l tiT‘;I;f“M Al Ao
SRR i

Va2 Dy
P,

Antikythera A_nr'l’echa,lﬂl_is.:rr;T Ve
100 BC L St

e/ IR

Marty McFly’s
Calculator Watch N

Babbage's difference engine

programmab/e Computer |

Aprogrammab/e computer

|| R
'- EIIQIIOI

‘:'l\\\lllllllllll"lllllll,I

I
i

%
g

!7‘ Intel 4004
: 'm".f.-mf"’ e Babbage's Analytical Engine

45 Years of the Microprocessor: Intel 4004 was 1971

4004 > 8008 > 8080 > 8086 > 80186 > 80286 > 80386 > 80486 >
Pentium > PIl > PIll > P4 > Core 2 > Core i3/5/7 > Xeon i5

Speed (Hz): 140,000 -> 4,600,000,000
Transistors 2,300 -> 5,500,000,000
Transistors * speed increased by 78,000,000,000

The Computer

Lots of maths

Controlled by logic
e |f something do this
e (Otherwise do that

The combination of a
mathematical calculator
with logic based flow control
IS what makes a
programmable computer

Further reading
® Universal Turing Machine
® \on-Neumann architecture

NO

HAMMERTIME

What is
Computational
Physics?

Computational Physics is

Using numerical methods

With a computer

To solve physics problems

Everything we do in this course could be done with pen
and paper, just more slowly.

Computational Physics is not

® Computer science
® Mathematical basis behind computation
® E.g. “Does this program ever finish”
® Algorithm design
® “Find the most efficient way of sorting these names”
® Data structures
® “How to store, index and retrieve patient records efficiently”

® Programming
® Just a tool, like your pocket calculator or Excel
® We provide support throughout the course to help with this

What is Computational
Physics?

Any arbitrary system can be described in terms of equations
 Ground state of a hydrogen atom

* Orbital mechanics

* Weather

Evaluating these equations allows us to simulate the system
 |tis through modelling / simulating many systems that we learn
 Simulate a theory and compare to experiment — is the theory correct?

For anything but the simplest system, an analytical solution is not possible
e 2 body vs 3 body problem in gravitation
 Ground state of hydrogen vs helium

Instead you have to solve the equations numerically

Programming...

® This course is about numerical methods applied to
Physics

® You will program a computer to do this

® The combination of numerical methods and

programming is a key skill for many researchers in
Physics

Programming...

® Hands Up time!
1. Who has a qualification in Mathematics?
2. Who has a qualification in Physics?
3. Who has a qualification in Computer Programming?

® Programming is a “great divide” amongst you —
massive variation in background compared to other
subjects

Programming...

e With this in mind, | put a lot of effort into helping with the programming,
such as:

® Relevant examples in the lectures
* Type them in! Learn by doing and experimenting

e Significant skeleton code in the weekly assessments
® Read it, think about it, type it in

e Model Solutions
® Read them, compare them to yours

Getting More Help

If you are struggling with the programming:

e Speak up! Ask at the end of the lectures. If you have a question,
others almost certainly do as well

e | will hold informal Q&As for 5 minutes at the end of lectures.
Come down to the front and talk to me (we may have to move)

e Talk to me and/or the other demonstrators in the workshops

e Email me! If its easier to talk than write the email to explain the
Issue then email me to arrange a separate meeting

® | am happy to receive groups of people

Understanding

® |[f you're a crack expert at programming

Please remember that many people are not
This sets the pace of the course

Think about how to expand on the weekly
assessments, or ask me for suggestions

Remember: The course is about numerical
methods

Make use of the workshop sessions — come along
and ask the staff member to comment on your
work — there is always something to learn (and
we might spot a missing axis label!)

Course Information

Learning Outcomes

® An understanding of numerical methods

Numerical methods for

e Differentiation,

® |[ntegration

e]1stand 2nd order ODEs

Monte Carlo techniques, random walks
Function minimization and optimization
Fractals and Chaos

® Developing skills

Familiarity with programming

®* Implementing things yourself

® Using “off the shelf” code from scipy
Graphically presenting data

Weekly Assessments

Weekly assessments are issued for this course

— Each problem takes the form of a small, simple Python
program

— No more than a page of code
Problems are released on DUO
Submission is electronic through DUO

Your code will be printed out, marked and returned
through the normal weekly problem system

Read the style guide (on DUO)

Course Structure

e 1300 Friday Assessment released (duo)

e 1/00 Monday, Tuesday, Thursday, Friday - Workshop
® You attend one workshop/week

® The workshop session is to provide you with help and
support for the associated weekly assessment

e Start the problem before the workshop to benefit the most
e READ THE SHEET ALL THE WAY THROUGH BEFORE START

e 1400 Monday the next week : Assessment deadline(duo)

® Assessments are converted into hardcopy printouts which are
marked and returned through pigeon holes

Deadlines

1400 on Monday is a HARD DEADLINE
e /ERO IF LATE!M

How to avoid missing a deadline

® Plan to finish your problem a day or two early
® |f you haven’t, submit your best efforts to date
® Then submit your final version

If you miss the deadline, your earlier version will be
marked

Repeat submissions via DUO are allowed and will
automatically supersede your earlier submission(s)

Weekly problem marks

® The precise division of marks varies from problem to
problem

® (General guidance:

109, Your file runs
409, Correctness of results
209, Answers to questions
109, Quality of your graph

AXES LABELS! UNITS! CAPTION! LEGEND!
209%, Quality of your code

Weekly problem marks

Check your work against the
“‘pre-flight’’ check-list on DUO
before submitting

L2/L3 Computational Physics 2014-2015
Pre-marking checklist
Open your file in an editor (e.g. IDLE) and look at the source code:

CHECK: Does your submission contain your name and CIS ID?

CHECK: Do you answer all questions asked in the assignment?

CHECK: Do you use meaningful variable names (e.g. “ix” and “iy” for index
variables in 2 dimensions (xy), as opposed to “i" and “j")?

From the terminal, change in to the folder containing your script, type:
“python myScript.py” where “myScript.py” is the name of your work, and
press enter. Always check after even the most minor edit, in case you
inadvertently broke something.

CHECK: Does your script run?

CHECK: Does a single graph appear?

CHECK: Do both graph axes have labels?

CHECK: Do axes labels include units where appropriate?
CHECK: Does the graph need a legend?

Code quality

Follow the style guide

Comments
e Sparingly but meaningfully

Variable names
® Give them some meaning

“Paragraphs” - Use blank
lines sparingly to separate
code into paragraphs. E.g.
® Beginning — imports, set up

e Middle — doing the maths

® [End - plotting etc.

Graphs

Your graphs should be of suitable quality for a lab
report

Guidance is given in your assessment briefs
® Do you want to know more?...
® http://matplotlib.org/gallery.html

Caption pyplot.title(“...”)
Axes labels pyplot.xlabel, pyplot.ylabel
Legend pyplot.legend(“...”)

Figures in lab reports have captions, but as you do not
submit a report, yours should have a title — short and
descriptive

matplotlib gallery

bnail gallery — Matplotlib 1.3.1 documer

Assessments: Don’'t Panic

® You will be given specific guidance and example
code each week READ IT AND FOLLOW STYLE

® The workshop sessions exist to give you help with
both the programming and the mathematics/
physics embodied by the methods

® Be prepared: Make the most of the workshop

sessions — try the problem in advance and come to
the workshop with questions

DUO : Laboratory Skills and Electronics (17 / 18) >
Course Documents > Computational Physics

&

m Course Documents > Computational Physics
LI

¥ Laboratory Skills and
Electronics (14/15)

Announcements
Sign Up

Course Information
Books

Contacts

Course Documents
Assignments
Communication
Discussion Board

Tools

COURSE MANAGEMENT

A

Computational Physics

Style Guide

Python Refresher

B Weekly Assessments

Yo, Edit Modeis:

0
P

~J

Style Guide

|% CompPhysStyleGuide1314 (1 page)

L2 Computatianal Physics Style Guide

Parpose of this guide - this document presents 2 series of rules that you are expecied fo
follow in your Computational Physics Weekly Assessments. These rales exist to both
help you to write and debag your code and help the demoestrators and markers to provide
you with useful feedback.

Code shown within an orange dashed rectangle i a transcript of an interactive interpreter
session - 50 this includes code that you type in and the resporses as displayed on the
interpreter. You should try entering all examples and running them, both with this style
guide and the weekly assessments.

>>> print "sello world"
Hello world

Rale 1 - Python version. The course and associated materials are tested on Python
version 2.6 and 2.7. The coumse requires recent versions of the ‘numpy’ and ‘matplotiib”
packages. Python 2.7.5 and the required packages ane availsble through the CIS
Windows system, which may be accessed from classroom computers. Altermatively you
may use your awn machine, in which case the free version of ‘Enthought Canopy’ is
recommended. However you should easure your code still works on the CIS
Windaws system to easare it can be marked. Da ot use Pythos version 3.0 or later.

Te IDLE environment an the CIS Windows system can be used to both dit, save and
run code. To st IDLE, 50 to the “Start menu” and ravigate to “All Programs >
Academic Software > Physics > Python 2.7.5 > IDLE (Pythor GUIL™ Pytkon 2.7.5 is
also available 2t the comemand prampt with the commard “python”.

Rale 2 - Enabling floatiag peint division. Always use the statement
from _ future__ inport diwision'to instruct Python to use floating point
division.

>>> print 1/2 4 Defaul: integer division
0

>>> fron _ future__ impor: division § enable new behaviour
>>> print 1/2 4 New floating division

0.5

Rale 3 - module import. Unless instructed otherwise, you should oaly ever import two
modsles in any weekly assessment submission; ramely numpy and matplotlid.pyplot. In
exterzal code you may see pyplot and pyleb used interchangeably withir: the matplotiib
package. pyplot is the preferred. choice. Do aot use noa-standard names for imparted
modules. The imparis are to be used s follows:

>>> import numpy
>>> import matplotlib.pyplot as pyplot

Rale 4 - variable names. A sensible choice of varishle names can impart great clarity
and legibility to code, for example using “ix' for ‘index over x and *iy" for index aver
y'. Conversely, ‘bob’, ‘bobber”, ‘bobbod’, “bobby’, “bobbery’ and ‘bobbert’ are often
poor choices, especially when used in conjunction. Good, descriptive variable names
belp the demoastrators to help you.

It’'s on DUO
One page
Please read and follow it

It makes it easier for the
demonstrators to read your
code

We have to read 180
programs each week!

We do this so we can help
you and provide feedback

Help us help you

Getting the most out of lectures

You all have your own learning styles
e What works for one person may not work for another

Full lecture notes go on DUO in advance of each lecture
e Some of you may find it useful to go through these in advance
® No need to take full notes

® Think — will you benefit from making key point summary notes in the
lecture?

In some lectures | will describe a method on the whiteboard,
incrementally building up a figure as | describe the method

® Think — will you benefit from building up a copy of the figure on paper as |
go?

Technical Background

Languages

® A programming language is how humans interact
with computers

® There are many types of language
® There is a phenomenal variety in computer languages

® The core concepts of most languages are very similar
— but with different names and syntax

Types of language

There are many paradigms

* Many languages cannot be purely tagged with just
one...

Imperative/Procedural
Functional

Symbolic Maths

Logic

Many more

Imperative Languages

Imperative Languages

“how, not what”
Do this, then this, then this
You tell the computer how to solve a problem

ALGOL, COBOL, FORTRAN, C, C#, C++, BASIC,
Python, Pascal, JavaScript, JAVA, MATLAB, IDL,
athematica, Perl, ...

This is the ‘de facto’ type of programming for
almost all of the physical sciences and the wider
software industry

Arguably it’ s not the right way

Functional Languages

Functional Language

When you program in a functional language you define
— Data

— Mathematical functions that operate on the data
You never explicitly declare how to perform these functions

In theory this frees up the computer to decide on the best way of
actually manipulating the data

LISP, Haskel, Microsoft Excel, Mathematica,

Whilst functional languages have many benefits, in general they are
rarely seen in the wild — why?

— Perhaps this is because they are a poor fit to how many people think
— They are not well suited to producing stuff like Windows or Word or games

Python

About the Python programming Language

The Python language

Origins in the early 1990s

“Free, Open-Source”
® No cost to buy or use it
® The “Source Code” is freely available all

“High level language”

® \ery approximately : it's easier to use but potentially
slower than, e.g. FORTRAN or C.

o We will talk more about speed later

Widely adopted by the scientific community

Languages in Astronomy

0.025 ; . .
—— Python
—— Fortran
ﬁ 0.020 H perl g
o
2
>
()
4
9]
3
‘© 0.015} g
©
>
()]
C
=
o
)
]
£ 0.010| g
o
(]
Q.
©
o
Y
o
¥ 0.005} g
P
0.000 L L
1995 2000 2005 2010 2015

Year

http://astrofrog.github.io/blog/2013/10/02/acknowledging-tools-services-in-papers/

Symbolic Maths

Symbolic Math

* Most languages perform numerical operations
(maths) on numbers stored in variables

* 'Symbolic Maths' or CAS (Computer Algebra Systems)
perform algebra on expressions and equations
defined in terms of symbols

Things to do with CAS

Integration

0]

Differentiation
Factorisation
Limits

Equation solving

Many more

CAS Packages

» CAS is one of those areas where $,$%%
packages still sell in large quantities

 Mathematica, Maple, Mathcad, Magma

* Also plenty of open source and free
packages

 SAGE
 SymPy (Symbolic maths in Python)
 Plenty more

Pros

Quick

A good CAS will know a lot
about algebra

Analytical solutions are
inherently more accurate than
numerical ones

cons

Once you've learnt to use it...

Brain rot!

How did it get the answer?

Not everything can be solved
analytically and no amount of
software will fix that

Computer has no intuition

It's all about the Journey

® My personal philosophy:

® The mathematical tools we learn are more than just a
means to an end

e Use of CAS hides the calculations, you just get a result

® [t is by journeying through the calculations that we come to
understand the relationship between mathematics and
physics, it is how we come to really understand physics

® |earn to travel by yourself, enjoy the journey and use CAS
to check that you've ended up in the right place

<> m #http://www.wolframalpha.com/ ¢ | (Qr wolfram alpha

& WolframAlpha sz
P knowledge engine
Enter what you want to calculate or know about:

| differentiate(x*log(x)/cos(x)) = ’

’ 82090 Welirem ADha T.CCSS AWoiTam Research Companys (7 Tennsiol ¥se. 1 BB ACY Folicy | S Entiy

—— —— —— —— — —— ——— — —— —— —— ——— —— —— — ——— . — ——— . ——— —— ——— — —— —— ——— ——— — ——

| . | | ﬂ~|
-

!ll! m '-! £ http: / /www. wolframalpha com/lnput/?l differen: Q~ wolfram alpha

Assuming "log" is the natural logarithm | Use the base 10 logarithm instead

Derivative: Show steps

(x log(x)
dx\ cos(x)

) = sec(x) + log(x) sec(x) + x log(x) tan(x) sec(x)

log(x) is the natural logarithm »
sec(x) is the secant function »

(x from -4 to 4)

— real part
—— imaginary part

0 (x from —30 to 30)
— real part

—— imaginary part

Alternate forms:
sec(x) (log(x) + x log(x) tan(x) + 1)
sec?(x) (x log(x) sin(x) + (log(x) + 1) cos(x))
2 2ie**xlog(x) 2ie*xlog(x) N 2 log(x)

e et * (e—ix +e-’x)2 (e-ix+eix)2 ety et

Example 2 - sympy
We want to compute the indefinite integral of

b =fx2.sin(x)

* Then we want the definite integral

Example 2 - sympy

We have to create a symbol to manipulate

>>> lmport Sympy

>»> # we have to explicitly declare our syrbols
>>> X = sympv.S3ymbol('x')

>»> # Integrate the function sini(x) * x**%2

Example 2 - sympy

Perform the integration

Note that we have to use sympy’ s own version of mathematical
operations — it knows how to symbolically manipulate these

>»> # Integrate the funetden-sin(x) * x*%2
RS- sympy.integrate T oxEE2)

2%cos(xX) - X¥F2*%cos (X ! S1in(x)

Example 2 - sympy

We can evaluate the definite integral between two limits

Sympy continues to work with symbols - e.g. cos (2)

>>> Sympy.integrate (sympy.sSini(x) * x*%%2, (x, 0, 2))

>»>> # Ewvaluate the integral over sSome range
-2 - 2%cosi(2) + 4%sin(2)

e el -vl

Example 2 - sympy

We ask sympy to evaluate all symbols

>>> # sSympy tries to maintain accuracy by retaining cosi(2) J
>»> # instead of an approximate walue. use evalf to get the walue

>>> ¥ = Sympy.integrate (synmpy.sSin(x) * x*¥%2, (x, 0, 2))

>>> y.evalf()

2.46943338039701

v

Ln: 33|Col: 16

GIGO

GIGO: Garbage In, Garbage Out

Your model is only as accurate as the data you put in to it
— Initial state

— Boundary conditions

— Physical constants

— Assumptions

Remember this when debugging code
— Perhaps the problem lies with the input data not the code

The importance of test cases!

Garbage In, Gospel Out

— Do not trust the output of a large numerical model just because
the model is 1,000,000 lines of code running on a 1024 CPU

supercomputer

Charles Babbage On GIGO

On two occasions I have been asked,

"Pray, Mr Babbage, if you put into the machine
wrong figures, will the right answers come out?”

I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a

question.

Try entering these numbers at the Python prompt

leld
lelb + 1
lelo
lelo + 1

ERh?

Accuracy

= 1,000,000,000,000,000
= 1,000,000,000,000,001
= 10,000,000,000,000,000
= 10,000,000,000,000,000

Floating Point

* A computer can only store a real number to
a finite precision — ultimately because it has
finite storage!

* The standard way of doing this is 'floating
point' — a number is stored as the binary
equivalent of 1.23456 x 10% for example

Floating Point

Python normally be built using IEEE 754
standard double precision floating point

These use 53 bits for the mantissa
1.23456 (mantissa) x 104 (exponent)

This means a maximum precision of around
1:10%¢ js possible

53 bits can store a range of 2°3
log,4(2°3)=15.95

Fractions

* Many fractional
numbers cannot be
accurately represented
in binary floating point

or in decimal for that
matter)

Python Shell = (O] x|

File Edit Shell Debug Options Windows Help

Python 2.5.4 (r254:67916, Dec 23 2008, 15:10:54) [M3C w.1310 32 bit ;l
Intel)] on win32
Type "copyright', "credits" or "license()" for more information.

R o o o o o o o o o o o o o o o i o o o o o o o o i o o o o
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not wisible on any external

interface and no data is sent to or received from the Internet.
R R o o o o o o o o o o o o o o i o o o o o o o o o o o o

IDLE 1.2.4

>>> # Python shows the precise nuber stored
>>> # when using the interactive console
>>> 1/3.

0.33333333333333331

>»> 1/2.

0.5

>>> # The print statement truncates somewhat
>>> print (1/3.)

0.333333333333

>>> print {(1/2.)

0.5

> |

v

Ln: 23|Col: 4

Fractions

* Many languages and
environments hide this
by carefully displaying
numbers

* Python chooses to
display the details when
used interactively, and

to format more carefully

when printing!

Python Shell = (O] x|

File Edit Shell Debug Options Windows Help

Python 2.5.4 (r254:67916, Dec 23 2008, 15:10:54) [M3C w.1310 32 bit ;l
Intel)] on win32
Type "copyright', "credits" or "license()" for more information.

R o o o o o o o o o o o o o o o i o o o o o o o o i o o o o
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not wisible on any external

interface and no data is sent to or received from the Internet.
R R o o o o o o o o o o o o o o i o o o o o o o o o o o o

IDLE 1.2.4

>>> # Python shows the precise nuber stored
>>> # when using the interactive console
>>> 1/3.

0.33333333333333331

>»> 1/2.

0.5

>>> # The print statement truncates somewhat
>>> print (1/3.)

0.333333333333

>>> print {(1/2.)

0.5

> |

v

Ln: 23|Col: 4

Rounding errors

* This also manifests in rounding errors

Python Shell =101 x|
File Edit Shell Debug Options Windows Help
IDLE 1.2.4 _:l

>>> sigma = 0.0
>>> for i1 in range (10):
sigma = sigma + 0.1

>»> # interactivity displays precise representation
>>> sigma

0.99999999999999959

>»> # printe rounds a bit

>>> print sigma

1.0
PR | L 4
|Ln: 23|Co|: 4

* This is a tiny error of 1:10°
— Equivalent to a 4nm high bump on the Earth
— But a very big problem if not understood

Do not test FP numbers for
equality

* Often floating point numbers are not exactly equal
— Due to rounding errors

— Rounding errors depend on the sequence of
calculations

[tuntitled™ =1olx|

File Edit Format Run Options Windows Help

>rr oa
>>> b
>rr oa
1.0
>>> b
0.99999999999999939
>>> a == b

False

>>> eps = le-10

>>> abs(a-b) < eps

= 1.0
=0.1+0.1 +0.1 +0.1 +0.1+0.1+0.1+0.1+0.1+ 0.1

True
el

v

Ln: 13|Col: 4

Do not test FP numbers for
equality

* Can you use an index variable for your test instead?
* Or a magnitude comparison (is a > b etc.)

* Otherwise compare to a small number that 1s greater
than rounding error

[tuntitled™ =1olx|

File Edit Format Run Options Windows Help

>rr oa
>>> b
>rr oa
1.0
>>> b
0.99999999999999939
>>> a == b

False

>>> eps = le-10

>>> abs(a-b) < eps

= 1.0
=0.1+0.1 +0.1 +0.1 +0.1+0.1+0.1+0.1+0.1+ 0.1

True
el

v

Ln: 13|Col: 4

What’ s Ahead?

1 .Finite differences

2 .Numerical integration — Rectangle rule,
Trapezium rule, Simpson's rule

3.1st order ODEs, Euler, RK, predictor-
corrector

A 2nd order ODEs, Euler-Cromer, black box
solvers

5.Monte Carlo methods

What’ s Ahead?

6. Minimization
/. Random Walks
8. Fractals and Chaos

9. Wrap up and moving forwards

Taylor Series

Recap from Level 1
MATH156(7)1: SINGLE MATHEMATICS A(B)

MATH1061: Calculus and Probability |

Taylor Series

® Approximation for a function f(x) near a point x=xg,

® Expand as power series in h

° f(xo+h)=a, + a; h+a, h2 + a3 h3 + ...
o h=0 gives f(x,)=a0

o differentiate

® f'(xoth)=a; + 2a, h+ 3 az h? + ...

o h=0 gives '(xy)= a;

a.=f(x,)/n!

Taylor Series

Approximation for a function f(x) near a point x=x,

Defined in terms of the derivatives of f(x) at a

o) o fG)
1! 2!

f(x,+dx)= if(i)(xo)dxi /n!

2
ax” +...

fxy+dx)= f(x,)+

NB:

)= fOx)= 4w
™ (x) = L

dx
O!=1

Taylor Series: Example

® Approximate sin(xy+dx) at x,=0

Taylor Series: Example

Approximate sin(x,+dx) at x,=0

3 5 7
X X X

sm(x)zx—§+ ST 7 +...

Taylor Series - applications

® The Taylor series is
one of the ways a
computer
calculates sin/cos
etc.

c++ - How does C compute sin() and other math functions? - Stack Overflow

S stackoverflow.com/questions/2284860/how-does-c-compute-sin-and-other-math-functions

signup login tour help

careers 2.0

requi

a
104
v

23

o
66
v
v

CAREERS 2.0 .ul + @

by stackoverflow

A
=] stackoverflow

Stack Overflow is a question and answer site for i and

22 . It's 100% free, no registration [CRWRTRIpYFISIY

How does C compute sin() and other math functions?

Have projects on BitBucket?
Import them easily to your profile

I've been poring through .NET disassemblies and the GCC source code, but can't seem to find anywhere
the actual implementation of sin() and other math functions... they always seem to be referencing
something else.

Can anyone help me find them? | feel like it's unlikely that ALL hardware that C will run on supports trig
functions in hardware, so there must be a software algorithm somewhere, right?

Edit: I'm aware of several ways that functions can be calculated, and have written my own routines to
compute functions using taylor series for fun. I'm curious about how real, production languages do it, since
all of my implementations are always several orders of magnitude slower, even though | think my
algorithms are pretty clever (obviously they're not).

ct+| ¢/ math

share | improve this question edited Aug 2813 at 13:59

‘ Cole Johnson
3,648 +8923043

Please note that this implementation dependent. You should specify which implementation you are most
interested in. — Jason Feb 17 '10 at 22:24

ked Feb 17 '10 at 22:22
PRl Henry Jackson
2,357 +3+21 039

both C and .net tags? — John Knoeller Feb 17 10 at 22:25

w

+1 because | asked this question (an algorithm for calculating sin) from my high school math and physics
teachers and nobody could answer me at that time. — Mehrdad Afshari Feb 1710 at 22:30

~

Itagged .NET and C because | looked in both places and couldn't figure out either. Although looking at the
NET disassembly it looks like it might be calling into unmanaged C, so as far as | know they have the same
implementation. - Henry Jackson Feb 17'10 at 23:12

also see: What algorithm is used by computers to calculate logarithms? — Amro Oct 113 at 16:20

18 Answers acive oldest | votes

In GNU libm, the implementation of sin is totally system-dependent. Therefore you can find the
implementation, for each platform, in the i i y of sysdeps.

Only one of these directories seems to include an implementation in C. It was contributed by IBM and
looks hard to follow. In some regions it uses the familiar Taylor series, but there's an awful lot of code.
Source: sysdeps/ieee754/dbl-64/s_sin.c

The version for Intel x86 processors is written in assembly. It simply uses the FPU's built-in fsin
instruction. Source: sysdeps/i386/fpu/s_sin.S

Ask Question

asked 4 years ago
viewed 49343 times
active 2 months ago

Blog

() Editing is essential: new badges
and review enhancements

Looking for a job?

Senior PHP Web & Application
Developer — PHP, MySQL, MVC,

Nigel Frank International
Newcastle upon Tyne, UK /...

php | zend-framework

Senior PHP Developer- Symfony 2
Argiva
London, UK

symfony2 | rest

i Developer (Spatial/Mapping)
Getech Group

Leeds, UK

o#| python

C#? Can your code control robots,
run experiments and find

Brooks Life Science Systems
Manchester, UK

c# .net

Linked

Math.h library functions in
assembly x86?

~

How are sin(x) or cos(x)
in math.h implemented?

w

How is the function “sin”
realized?

60 How do Trigonometric
functions work?

o8 _Definitions of sart, sin

Finite Difference Method

A numerical method to approximate the derivative of a function

Finite Difference Method

Discarding higher order terms from Taylor series:

f(x+dx)= f(x)+ f(x)dx

Re-arrange to approximate 1st derivative (gradient)

J(x+dx)- f(x)
dx

f(x)~

Classes of Method

Forwards difference
fl(x)=

Backwards difference

fv(x) ~ f(X)—f(X—dX)

Central difference dx

J(x+dx)- f(x)
dx

Fi(x) = f(x+dx/2)-f(x—dx/2)

dx

Questions to ponder...

® Taylor series

® Does this method apply to all types of
function?

® Finite difference
e Which method(s) is most accurate?
® \Which method(s) is fastest to compute?
® Are all methods equally useful?

® How do you extend this to measure 2"d
derivative?

e \What happens on a computer for dx << 17

