
Week 2

1

 Numerical Integration

Finite differences

•  Taylor expansion:
•  f(x0+h) = f(x0)+f’(x0) h +f’’(x0) h2/2!+…

•  f(x0+h) - f(x0) = f’(x0) h +f’’(x0) h2/2!+…

•  [f(x0+h) - f(x0)]/h = f’(x0) + f’’(x0) h/2!+…

•  Approximation good to O(h)

2

Finite differences

•  Taylor expansion: MIDPOINT
•  f(x0+ h/2) = f(x0)+f’(x0) h/2 +f’’(x0) (h/2)2/2!+…

•  f(x0 - h/2) = f(x0)+f’(x0) (-h/2) +f’’(x0) (-h/2)2/2!+…

•  f(x0+ h/2) - f(x0 -h/2) = f’(x0)h + f’’’(x0) (h/2)3 2/3! +…

•  [f(x0+ h/2) - f(x0 -h/2)]/h = f’(x0) + f’’’(x0) (h/2)2 /3!

•  Approximation good to O(h2)

3

Numerical Integration

•  Finding the area under a curve

•  An alternative to analytical
solutions (i.e. doing the maths)

–  When a formula can’t be

symbolically integrated
–  When it is computationally cheaper

to evaluate numerically than
analytically

–  When a formula isn’t available – only
numerical data

∫=
1

0
).(

x

x
dxxfs

4

y=f(x)

x

y

a b

s

s f x

Numerical Integration
•  Finding the area under a curve
•  An alternative to analytical

solutions (i.e. doing the maths)

•  Simplest: N panels each width h

•  Approximate as rectangle

5

y=f(x)

x

y

a b

s

s f x

s = f (x).dx
a

b
∫ = f (x).dx

xn

xn+h
∫

n=0

N−1

∑

≈ [f (xn)
n=0

N−1

∑ + f '(xn)h+ f ''(xn)h
2 / 2+...]h

≈ f (xn)h+O(h
2)

n=0

N−1

∑

Rectangles

•  Divide the function into a
series of rectangular
panels

•  This is the simplest way.
Height of the rectangle
set by function value at
start (left point)

x

f
(
x
)

≈
n=0

N−1

∑ f (xn)h+O(h
2)

Rectangles

•  Divide the function into a
series of rectangular
panels

•  This is the simplest way.
Height of the rectangle
set by function value at
right hand point

x

f
(
x
)

≈
n=1

N

∑ f (xn)h+O(h
2)

s = f (x).dx
x0

x1
∫

= f (x).dx
xn−h/2

xn+h/2
∫

n=1

N−1

∑

= f (x).dx
xn−h/2

xn
∫

n=1

N−1

∑ + f (x).dx
xn

xn+h/2
∫

n=1

N−1

∑

≈ [f (xn)
n=1

N−1

∑ + f '(xn)(−h / 2)+ f ''(xn)(−h / 2)
2 / 2+...]h / 2+

+[f (xn)+ f '(xn)(h / 2)+ f ''(xn)(h / 2)
2 / 2+...]h / 2

= [f (xn)
n=1

N−1

∑ + f ''(xn)(h / 2)
2 / 2+...]h ≈ f (xn)

n=1

N−1

∑ h+O(h3)

Rectangles – MIDPOINT

Rectangles
•  Divide the function into a

series of rectangular
panels

•  This is the simplest way

•  And with midpoint its
same number of
calculations but better
accuracy! x

f
(
x
)

Trapezium Rule
•  Instead of rectangles, use

trapeziums
•  Ie use first order derivative

information

10

x

f
(
x
)

Computational Cost
•  2 function evaluations per

panel

•  But edges are shared
–  1 per panel + 1

•  More accurate than
rectangles for no extra
function evaluations

11

x

f
(
x
)

What’s going on?
•  We are fitting analytical

expressions to each panel of
our function

•  Nth order Lagrange
polynomial expansions

•  We then analytically
integrate these small chunks

12

Rule Expression

Rectangle y = k0

Trapezium y = k0 + k1x

Midpoint rule (rectangle)

13

Panel area : y = k0 + k1x + k2x2 + k3x3

x

f
(
x
)

Trapezium Rule (GCSE!)

14

Panel area : y = k0 + k1x + k2x2 + k3x3

x

f
(
x
)

Simpson’s Rule

15

Panel area : y = k0 + k1x + k2x2 + k3x3

x

f
(
x
)

Simpson’s Rule

16

Panel area : y = k0 + k1x + k2x2 + k3x3

Simpson’s Rule

17

Simpson’s Rule - formula

•  Use quadratic information – second
derivative

•  Panel a <= x <= b

•  m = (a + b) / 2
 m for middle!

()∫ ++
−

=
a

b
bfmfafabxf)()(.4)(

6
)(

18

It’s all about the balance
•  In real world use, computing the function calls costs time –

complicated functions!

•  You need some desired level of accuracy

•  The choice of algorithm makes more difference than the panel
size

19

Errors Speed

It’s all about the balance
•  In real world use, computing the function calls costs time –

complicated functions!

•  You need some desired level off accuracy

•  The choice of algorithm makes more difference than the panel
size

20

Errors Speed

•  How accurate do you need your answer?

Error scaling

N
ab 1
∝−

21

So doubling the number of panels decreases the error:

 Rectangle – 8x

 Trapezium – 8x

 Simpson – 32x

Accuracy vs. computational
cost

∫
4

0

2)sin(xx

22
Simpson’s rule is the clear winner – higher order methods
are even better, but are rarely needed

Higher order methods
•  Simpson’s 3/8’s rule

•  Boole’s rule

•  Any higher order you want

•  Generally, Simpson’s rule is enough

23

Making some code…

24

A Practical Algorithm
•  Let’s code an integrator with the midpoint rule

•  Weekly assessment is to code an integrator with Simpson’s rule

•  Find the definite integral of f(x) between x0 and x1

•  Let’s use 5 panels

dxxfarea
x

x
.)(

1

0∫=

25

Start with the equation
�  S = h*f1 + h*f2 + h*f3 + h*f4 + h*f5

•  5 function evaluations

•  5 multiplies

26

Factorise
�  S = h*(f1+ f2 + f3 + f4 + f5)

•  5 function evaluations

•  1 multiply

•  Potentially less rounding errors

27

Specify panel width?
•  Your integration function needs to decide on a panel

width.

•  We could tell the code to use a specific width,
panel_width, but depending on the integration range we
may not get an integer number of panels

•  E.g. integrate 0 <= x <= 1.2 with a panel_width of 0.5
–  Blackboard example

•  We would have to add some more code to handle this
‘special case’ (e.g. use a different width final panel)
–  It’s ‘special case’ code that makes most of the bugs!

28

Specify number of panels?
•  Instead we could specify the number of panels to

use, N_panels

•  The code then computes
–  panel_width = (x1-x0)/N_panels

•  Now we know that the panels always fit the
integration range – no special case code needed.

29

Specify number of panels?
from __future__ import division

import numpy

def f(x):

 return x**4

30

Specify number of panels?
def integrate_rect(a,b,n_panels):

 h=(b-a)/n_panels

 func_sum=0.0

 for ix in range(n_panels):

 x=a+ix*h+h/2 # not x=x+h as cumulative

 func_sum=func_sum+f(x)

 return func_sum*h #at end so only do it once

31

Specify number of panels?
a=0

b=2

num= integrate_rect(a,b,100)

#test the code using the analytic solution

ana=(b**5)/5-(a**5)/5

print num, ana, (num-ana)/ana

32

33

Test code

Outputs are

6.399466676

and

6.4

Black Box integrators

34

Black Box
•  ‘black box’ code is some third party module

•  You know how to use it (API Documentation)

•  Perhaps you don’t know or care about the details of how it works
–  Caveat Emptor
–  Brain rot!

35

?inputs outputs

scipy.integrate

36

Example
•  Let’s integrate sin(x)

•  Simple function so we can
also do this analytically

37

Example
•  Let’s integrate sin(x)

•  Simple function so we can
also do this analytically

38

SciPy is correct! – to ten decimal places anyway

It’s always a good idea to compare third party black box code to a simple
anayltical case:

1.  This checks that their module isn’t completely broken!

2.  It checks that you are using their module correctly

Example
•  Let’s integrate sin(x)

•  Simple function so we can
also do this analytically

39

SciPy gives us an error /
accuracy value

But how does SciPy know
this for any function in the
absence of an analytical
solution?

Tolerance analysis

Tolerance driven approach
•  Many third party integrators work to deliver a certain
‘tolerance’

•  Tolerance – what is the change in the computed value if
the number of panels is doubled?

•  The tolerance asymptotically approaches zero as the
error reduces with increasing step size

•  This allows a known accuracy to be reached in the
absence of an analytical solution (i.e. real problems!)

40

Tolerance example

41

∫
64

0

2)sin(dxxx

Evaluate for N panels

Tolerance example

42

∫
64

0

2)sin(dxxx

Evaluate for N panels

Tolerance example

43

∫
64

0

2)sin(dxxx

Evaluate for N panels

Tolerance example

44

∫
64

0

2)sin(dxxx

Evaluate for N panels

Tolerance example

45

∫
64

0

2)sin(dxxx

Evaluate for N panels

Tolerance example

46

∫
64

0

2)sin(dxxx

Evaluate for N panels

Stretch excercises
�  Derive Simpson’s rule

�  On paper, fit a 2nd order polynomial to the left-, mid-
and right- points of a panel; f(a), f(m); f(b)

�  Integrate this polynomial fit

�  Build a tolerance driven integrator:

�  What happens if you make panel width too small?

47

