
Week 2 
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 Numerical Integration 



Finite differences 

•  Taylor expansion: 
•  f(x0+h) = f(x0)+f’(x0) h +f’’(x0) h2/2!+… 

•  f(x0+h) - f(x0) = f’(x0) h +f’’(x0) h2/2!+… 

•  [f(x0+h) - f(x0) ]/h = f’(x0)  + f’’(x0) h/2!+… 

•  Approximation good to O(h) 
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Finite differences 

•  Taylor expansion: MIDPOINT 
•  f(x0+ h/2) = f(x0)+f’(x0) h/2 +f’’(x0) (h/2)2/2!+… 

•  f(x0 - h/2) =  f(x0)+f’(x0) (-h/2) +f’’(x0) (-h/2)2/2!+… 

 

•  f(x0+ h/2) - f(x0  -h/2) = f’(x0)h + f’’’(x0) (h/2)3 2/3! +… 

•  [f(x0+ h/2) - f(x0  -h/2) ]/h = f’(x0) + f’’’(x0) (h/2)2 /3!  

 

•  Approximation good to O(h2) 
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Numerical Integration 

•  Finding the area under a curve 
 

•  An alternative to analytical 
solutions (i.e. doing the maths) 

 
–  When a formula can’t be 

symbolically integrated 
–  When it is computationally cheaper 

to evaluate numerically than 
analytically 

–  When a formula isn’t available – only 
numerical data  
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Numerical Integration 
•  Finding the area under a curve 
•  An alternative to analytical 

solutions (i.e. doing the maths) 

•  Simplest: N panels each width h 

•  Approximate as rectangle 
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Rectangles 

•  Divide the function into a 
series of rectangular 
panels 

•  This is the simplest way. 
Height of the rectangle 
set by function value at 
start (left point) 
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Rectangles 

•  Divide the function into a 
series of rectangular 
panels 

•  This is the simplest way. 
Height of the rectangle 
set by function value at 
right hand point 

 

x 

f
(
x
)
 

≈
n=1

N

∑ f (xn )h+O(h
2 )



s = f (x).dx
x0

x1
∫

= f (x).dx
xn−h/2

xn+h/2
∫

n=1

N−1

∑

= f (x).dx
xn−h/2

xn
∫

n=1

N−1

∑ + f (x).dx
xn

xn+h/2
∫

n=1

N−1

∑

≈ [ f (xn )
n=1

N−1

∑ + f '(xn )(−h / 2)+ f ''(xn )(−h / 2)
2 / 2+...]h / 2+

+[ f (xn )+ f '(xn )(h / 2)+ f ''(xn )(h / 2)
2 / 2+...]h / 2

= [ f (xn )
n=1

N−1

∑ + f ''(xn )(h / 2)
2 / 2+...]h ≈ f (xn )

n=1

N−1

∑ h+O(h3)

Rectangles – MIDPOINT 



Rectangles 
•  Divide the function into a 

series of rectangular 
panels 

•  This is the simplest way 

•  And with midpoint its 
same number of 
calculations but better 
accuracy! x 
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Trapezium Rule 
•  Instead of rectangles, use 

trapeziums  
•  Ie use first order derivative 

information 
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Computational Cost 
•  2 function evaluations per 

panel 

•  But edges are shared  
–  1 per panel + 1  

•  More accurate than 
rectangles for no extra 
function evaluations 
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What’s going on? 
•  We are fitting analytical 

expressions to each panel of  
our function 

•  Nth order Lagrange 
polynomial expansions 

•  We then analytically 
integrate these small chunks 
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Rule Expression 

Rectangle y = k0 

Trapezium y = k0 + k1x 



Midpoint rule (rectangle) 
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Panel area : y = k0 + k1x + k2x2  + k3x3 
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Trapezium Rule (GCSE!) 

14 

Panel area : y = k0 + k1x + k2x2  + k3x3 
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Simpson’s Rule 
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Panel area : y = k0 + k1x + k2x2  + k3x3 
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Simpson’s Rule 
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Panel area : y = k0 + k1x + k2x2  + k3x3 



Simpson’s Rule 
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Simpson’s Rule - formula 

•  Use quadratic information – second 
derivative 

•  Panel a <= x <= b 

•  m = (a + b) / 2     
  m for middle! 
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It’s all about the balance 
•  In real world use, computing the function calls costs time – 

complicated functions! 

•  You need some desired level of  accuracy 

•  The choice of  algorithm makes more difference than the panel 
size 
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It’s all about the balance 
•  In real world use, computing the function calls costs time – 

complicated functions! 

•  You need some desired level off  accuracy 

•  The choice of  algorithm makes more difference than the panel 
size 
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Errors Speed

•  How accurate do you need your answer? 



Error scaling 

N
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So doubling the number of panels decreases the error: 

 Rectangle – 8x 

 Trapezium – 8x 

 Simpson – 32x 



Accuracy vs. computational 
cost 
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Simpson’s rule is the clear winner – higher order methods 
are even better, but are rarely needed 



Higher order methods 
•  Simpson’s 3/8’s rule 

•  Boole’s rule 

•  Any higher order you want 

•  Generally, Simpson’s rule is enough 
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Making some code… 
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A Practical Algorithm 
•  Let’s code an integrator with the midpoint rule 

•  Weekly assessment is to code an integrator with Simpson’s rule 

•  Find the definite integral of f(x) between x0 and x1 

•  Let’s use 5 panels  
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Start with the equation 
�  S = h*f1 + h*f2 + h*f3 + h*f4 + h*f5  

•  5 function evaluations 

•  5 multiplies 
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Factorise 
�  S = h*(f1+ f2 + f3 + f4 + f5 ) 

•  5 function evaluations 

•  1 multiply 

•  Potentially less rounding errors 
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Specify panel width? 
•  Your integration function needs to decide on a panel 

width. 

•  We could tell the code to use a specific width, 
panel_width, but depending on the integration range we 
may not get an integer number of  panels 

•  E.g. integrate 0 <= x <= 1.2 with a panel_width of  0.5 
–  Blackboard example 

•  We would have to add some more code to handle this 
‘special case’ (e.g. use a different width final panel) 
–  It’s ‘special case’ code that makes most of the bugs! 
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Specify number of  panels? 
•  Instead we could specify the number of  panels to 

use, N_panels 

•  The code then computes  
–  panel_width = (x1-x0)/N_panels 

•  Now we know that the panels always fit the 
integration range – no special case code needed. 
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Specify number of  panels? 
from __future__ import division 

import numpy 

 

def  f(x): 

 return x**4 
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Specify number of  panels? 
def  integrate_rect(a,b,n_panels): 

 h=(b-a)/n_panels 

      func_sum=0.0 

 for ix in range(n_panels): 

  x=a+ix*h+h/2 # not x=x+h as cumulative 

  func_sum=func_sum+f(x) 

 

 return func_sum*h     #at end so only do it once
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Specify number of  panels? 
a=0  

b=2 

num= integrate_rect(a,b,100) 

#test the code using the analytic solution 

ana=(b**5)/5-(a**5)/5 

print num, ana, (num-ana)/ana 
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Test code 

 

Outputs are 

 

6.399466676 

and 

6.4  

 

 



Black Box integrators 
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Black Box 
•  ‘black box’ code is some third party module 

•  You know how to use it (API Documentation) 

•  Perhaps you don’t know or care about the details of how it works 
–  Caveat Emptor 
–  Brain rot! 
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?inputs outputs



scipy.integrate 
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Example 
•  Let’s integrate sin(x) 

•  Simple function so we can 
also do this analytically 
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Example 
•  Let’s integrate sin(x) 

•  Simple function so we can 
also do this analytically 

38 

SciPy is correct! – to ten decimal places anyway 

 

It’s always a good idea to compare third party black box code to a simple 
anayltical case: 

 

1.  This checks that their module isn’t completely broken! 

2.  It checks that you are using their module correctly 



Example 
•  Let’s integrate sin(x) 

•  Simple function so we can 
also do this analytically 
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SciPy gives us an error / 
accuracy value 

But how does SciPy know 
this for any function in the 
absence of an analytical 
solution? 

Tolerance analysis 



Tolerance driven approach 
•  Many third party integrators work to deliver a certain 
‘tolerance’ 

•  Tolerance – what is the change in the computed value if  
the number of  panels is doubled? 

•  The tolerance asymptotically approaches zero as the 
error reduces with increasing step size 

•  This allows a known accuracy to be reached in the 
absence of  an analytical solution (i.e. real problems!) 
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Tolerance example 

41 

∫
64

0

2 )sin( dxxx

Evaluate for N panels 



Tolerance example 
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Tolerance example 
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Tolerance example 
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Tolerance example 
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Tolerance example 
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Stretch excercises 
�  Derive Simpson’s rule 

�  On paper, fit a 2nd order polynomial to the left-, mid- 
and right- points of  a panel; f(a), f(m); f(b) 

�  Integrate this polynomial fit 

�  Build a tolerance driven integrator: 

 

�  What happens if  you make panel width too small? 
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