Week 2

Numerical Integration

Finite differences

- Taylor expansion:
- $f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+f^{\prime \prime}\left(x_{0}\right) h^{2 / 2!+\ldots}$
- $f\left(x_{0}+h\right) \cdot f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) h+f^{\prime \prime}\left(x_{0}\right) h^{2} / 2!+\ldots$
- $\left[f\left(x_{0}+h\right) \cdot f\left(x_{0}\right)\right] / h=f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right) h / 2!+\ldots$
- Approximation good to O(h)

Finite differences

- Taylor expansion: MIDPOINT
- $f\left(x_{0}+h / 2\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h / 2+f^{\prime \prime}\left(x_{0}\right)(h / 2)^{2} / 2!+\ldots$
- $f\left(x_{0}-h / 2\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)(-h / 2)+f^{\prime \prime}\left(x_{0}\right)(-h / 2)^{2} / 2!+\ldots$
- $f\left(x_{0}+h / 2\right) \cdot f\left(x_{0}-h / 2\right)=f^{\prime}\left(x_{0}\right) h+f^{\prime \prime \prime}\left(x_{0}\right)(h / 2)^{3} 2 / 3!+\ldots$
- $\left[f\left(x_{0}+h / 2\right) \cdot f\left(x_{0}-h / 2\right)\right] / h=f^{\prime}\left(x_{0}\right)+f^{\prime \prime \prime}\left(x_{0}\right)(h / 2)^{2} / 3!$
- Approximation good to $O\left(h^{2}\right)$

Numerical Integration

- Finding the area under a curve
- An alternative to analytical solutions (i.e. doing the maths)
- When a formula can't be

$s=\int_{0.0}^{\pi} \int_{0}^{f(x) d x}$ symbolically integrated
- When it is computationally cheaper to evaluate numerically than analytically
- When a formula isn't available - only numerical data

Numerical Integration

- Finding the area under a curve
- An alternative to analytical solutions (i.e. doing the maths)
- Simplest: N panels each width h
- Approximate as rectangle

$$
\begin{aligned}
& s=\int_{a}^{b} f(x) \cdot d x=\sum_{n=0}^{N-1} \int_{x n}^{x n+h} f(x) \cdot d x \\
& \approx \sum_{n=0}^{N-1}\left[f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) h+f^{\prime \prime}\left(x_{n}\right) h^{2} / 2+\ldots\right] h \\
& \approx \sum_{n=0}^{N-1} f\left(x_{n}\right) h+O\left(h^{2}\right)
\end{aligned}
$$

Rectangles

$\approx \sum_{n=0}^{N-1} f\left(x_{n}\right) h+O\left(h^{2}\right)$

- Divide the function into a series of rectangular panels
- This is the simplest way. Height of the rectangle set by function value at start (left point)

Rectangles

$\approx \sum_{n=1}^{N} f\left(x_{n}\right) h+O\left(h^{2}\right)$

- Divide the function into a series of rectangular panels
- This is the simplest way. Height of the rectangle set by function value at right hand point

Rectangles - MIDPOINT

$$
\begin{aligned}
& s=\int_{x 0}^{x 1} f(x) \cdot d x \\
& =\sum_{n=1}^{N-1} \int_{x n-h / 2}^{x n+h / 2} f(x) \cdot d x \\
& =\sum_{n=1}^{N-1} \int_{x n-h / 2}^{x n} f(x) \cdot d x+\sum_{n=1}^{N-1} \int_{x n}^{x n+h / 2} f(x) \cdot d x \\
& \approx \sum_{n=1}^{N-1}\left[f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)(-h / 2)+f^{\prime \prime}\left(x_{n}\right)(-h / 2)^{2} / 2+\ldots\right] h / 2+ \\
& +\left[f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)(h / 2)+f^{\prime \prime}\left(x_{n}\right)(h / 2)^{2} / 2+\ldots\right] h / 2 \\
& =\sum_{n=1}^{N-1}\left[f\left(x_{n}\right)+f^{\prime \prime}\left(x_{n}\right)(h / 2)^{2} / 2+\ldots\right] h \approx \sum_{n=1}^{N-1} f\left(x_{n}\right) h+O\left(h^{3}\right)
\end{aligned}
$$

Rectangles

- Divide the function into a series of rectangular panels
- This is the simplest way
- And with midpoint its same number of calculations but better accuracy!

Trapezium Rule

- Instead of rectangles, use trapeziums
- Ie use first order derivative information

Computational Cost

- 2 function evaluations per panel
- But edges are shared
- 1 per panel +1
- More accurate than rectangles for no extra function evaluations

What's going on?

- We are fitting analytical expressions to each panel of our function
- $\mathrm{N}^{\text {th }}$ order Lagrange polynomial expansions
- We then analytically integrate these small chunks

Rule	Expression
Rectangle	$y=k_{0}$
Trapezium	$y=k_{0}+k_{1} x$

Midpoint rule (rectangle)
 Panel area: $\boldsymbol{y}=k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}$

Trapezium Rule (GCSE!) Panel area: $\boldsymbol{y}=k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}$

Simpson's Rule

Panel area: $y=k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}$

Simpson's Rule

Panel area: $\boldsymbol{y}=k_{0}+k_{1} x+k_{2} x^{2}+k_{3} x^{3}$

Simpson's Rule

Simpson's Rule - formula

- Use quadratic information - second derivative
- Panel $a<=x<=b$
- $m=(a+b) / 2$
m for middle!

$$
\int_{b}^{a} f(x)=\frac{b-a}{6}(f(a)+4 . f(m)+f(b))
$$

It's all about the balance

- In real world use, computing the function calls costs time complicated functions!
- You need some desired level of accuracy
- The choice of algorithm makes more difference than the panel size

Errors

Speed

It's all about the balance

- In real world use, computing the function calls costs time complicated functions!
- You need some desired level off accuracy
- The choice of algorithm makes more difference than the panel size

Errors

- How accurate do you need your answer?

Error scaling

Method	Order	Panel area formula	Function evaluations	Error (order)
Rectangle (midpoint)	0	$(b-a) f(m)$	N	$2(\mathrm{~b}-\mathrm{a})^{3}$
Trapezium	1	$\frac{(b-a)}{2}[f(a)+f(b)]$	$\mathrm{N}+1$	$(\mathrm{~b}-\mathrm{a})^{3}$
Simpson	2	$\frac{(b-a)}{6}[f(a)+4 f(m)+f(b)]$	$2 \mathrm{~N}+1$	$(\mathrm{~b}-\mathrm{a})^{5}$

$$
b-a \propto \frac{1}{N}
$$

So doubling the number of panels decreases the error:
Rectangle - 8x
Trapezium - 8x
Simpson - 32x

Accuracy vs. computational
 cost

$\int_{0}^{4} x^{2} \sin (x)$

Simpson's rule is the clear winner - higher order methods are even better, but are rarely needed

Higher order methods

- Simpson's $3 / 8$ ' s rule
- Boole’s rule
- Any higher order you want
- Generally, Simpson's rule is enough

Making some code...

A Practical Algorithm

- Let's code an integrator with the midpoint rule
- Weekly assessment is to code an integrator with Simpson's rule
- Find the definite integral of $f(x)$ between x_{0} and x_{1}
- Let's use 5 panels

$$
\text { area }=\int_{x 0}^{x 1} f(x) \cdot d x
$$

Start with the equation

- $S=h^{*} f_{1}+h^{*} f_{2}+h^{*} f_{3}+h^{*} f_{4}+h^{*} f_{5}$
- 5 function evaluations
- 5 multiplies

Factorise

- $S=h^{*}\left(f_{1}+f_{2}+f_{3}+f_{4}+f_{5}\right)$
- 5 function evaluations
- 1 multiply
- Potentially less rounding errors

Specify panel width?

- Your integration function needs to decide on a panel width.
- We could tell the code to use a specific width, panel_width, but depending on the integration range we may not get an integer number of panels
- E.g. integrate $0<=x<=1.2$ with a panel_width of 0.5
- Blackboard example
- We would have to add some more code to handle this 'special case' (e.g. use a different width final panel)
- It's 'special case' code that makes most of the bugs!

Specify number of panels?

- Instead we could specify the number of panels to use, N_panels
- The code then computes
- panel_width = (x1-x0)/N_pane/s
- Now we know that the panels always fit the integration range - no special case code needed.

Specify number of panels?

from __future__ import division import numpy
def $f(x)$:

$$
\text { return } x^{* *} 4
$$

Specify number of panels?

def integrate_rect(a,b,n_panels):
h=(b-a)/n_panels
func_sum=0.0
for ix in range(n_panels):
$x=a+i x^{*} h+h / 2$ \# not $x=x+h$ as cumulative
func_sum=func_sum $+f(x)$
return func_sum*h
\#at end so only do it once

Specify number of panels?

$a=0$
$b=2$
num= integrate_rect(a,b,100)
\#test the code using the analytic solution
ana $=\left(b^{* * 5}\right) / 5-(a * * 5) / 5$
print num, ana, (num-ana)/ana
from _future__ import division demot.py-G:iteachingtzo10-2
import numpy
def $\mathrm{f}(\mathrm{x}):$
return $x * * 4$
\# Variables
\# a - left (x-axis) of a panel
\# b - right (x-axis) of a panel
\# m - middle (x-axis) of a panel
def integrate_rect ($\times 0, \times 1, ~ n _p a n e l s$):
'' Integrate the function f between $x 0$ and $x 1$ ''
\# Split the intervale $\mathrm{x0}<=\mathrm{x}<=\mathrm{x} 1$ into panels
panel_width $=(\times 1-x 0) / n _p a n e l s$
$\#$ Some of $\mathrm{f}(0)+\mathrm{f}(1)+\mathrm{f}(2)+\ldots$
func_sum = 0
for $i x$ in range (n _panels):
\# Find the left edge of this panel
$a=x 0+i x$ * panel_width
\# Find the midpoint
$m=a+p a n e l$ width / 2
func_sum += $\mathbf{f}(\mathrm{m})$
return panel_width * func_sum

Test code

Outputs are

6.399466676
and
6.4

Black Box integrators

Black Box

- 'black box' code is some third party module
- You know how to use it (API Documentation)
- Perhaps you don' t know or care about the details of how it works
- Caveat Emptor
- Brain rot!

scipy.integrate

```
Python Shell
File Edit Shell Debug Options WWindows Help
    >>> import scipy
    >>> import scipy.integrate
    >>> help (scipy.integrate)
    Help on package scipy.integrate in scipy:
    NAME
        scipy.integrate
    FILE
        d:\lang\python25\lib\site-packages\scipy\integrate\__init__.py
    DESCRIPTION
        Integration routines
        ====================
        Methods for Integrating Functions given function object.
            quad -- General purpose integration.
        dblquad -- General purpose double integration.
        tplquad
        fixed_quad
        quadrature
        romberg
        -- General purpose triple integration.
        -- Integrate func(x) using Gaussian quadrature of order n.
        -- Integrate with given tolerance using Gaussian quadrature.
        -- Integrate func using Romberg integration.

\section*{Example}
- Let's integrate \(\sin (\mathrm{x})\)
- Simple function so we can also do this analytically


\section*{Example}
- Let's integrate \(\sin (\mathrm{x})\)
- Simple function so we can also do this analytically


SciPy is correct! - to ten decimal places anyway

It's always a good idea to compare third party black box code to a simple anayltical case:
1. This checks that their module isn't completely broken!
2. It checks that you are using their module correctly

\section*{Example}
- Let's integrate \(\sin (\mathrm{x})\)
- Simple function so we can also do this analytically
\begin{tabular}{|c|c|}
\hline Python Shell & - [a] \(x\) \\
\hline File Edit Shell Debug Options Windows Help & \\
\hline \multicolumn{2}{|l|}{```
>>> import scipy.integrate
>>> import numpy
>>> def f(x): # Function to integrate
        return numpy.sin(x)
```} \\
\hline \multicolumn{2}{|l|}{```
>>> # Analytical solution for integral of sin(x) over 0 <= x <= 2
>>> # is (-cos(2)) - (-\operatorname{cos(0))}
>>> -numpy.cos(2) + numpy.cos(0)
1.4161468365471424
>>> # Now let's ask scipy to do it for us
>>> scipy.integrate.quadrature(f, 0, 2)
(1.4161468365458689`6.6721272951042465e-0110
```} \\
\hline \multicolumn{2}{|r|}{Ln: 24|Col: 4} \\
\hline
\end{tabular}

SciPy gives us an error / accuracy value

But how does SciPy know this for any function in the absence of an analytical solution?

Tolerance analysis

\section*{Tolerance driven approach}
- Many third party integrators work to deliver a certain 'tolerance'
- Tolerance - what is the change in the computed value if the number of panels is doubled?
- The tolerance asymptotically approaches zero as the error reduces with increasing step size
- This allows a known accuracy to be reached in the absence of an analytical solution (i.e. real problems!)

\section*{Tolerance example}

\section*{Evaluate for \(\mathbf{N}\) panels}



\section*{Stretch excercises}
- Derive Simpson's rule
- On paper, fit a \(2^{\text {nd }}\) order polynomial to the left-, midand right- points of a panel; \(f(a), f(m) ; f(b)\)
- Integrate this polynomial fit
- Build a tolerance driven integrator:
- What happens if you make panel width too small?```

