
L2 Computational Physics 
Week 3 – 1st order ODEs 
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Differential Equations 
Numerical Solvers 
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Background 
•  What sets differential equations apart from 

numerical integration? 

 

•  Function depends upon itself  

 

•  Often a DEQ is not solvable by analytical techniques  
Ø Use numerical approximations 
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DEQ’s everywhere 
•  Physics 

–  N-body problem (Newton’s second law) 

–  Fluid Dynamics (Navier-Stokes equation) 

–  Wave Equation 

–  Electromagnetism (Maxwell’s equations) 

–  General Relativity (Einstien’s Field Equation) 

–  Ballistics (Newton, friction) 

•  Economics 

•  Biology 

•  Everywhere! 

4 



Differential equations 

•  Equation for variable ‘x’ depends on independent variable ‘t’ 

•  An ordinary differential equation (ODE) for variable ‘x’ 
depends on the value of ‘x’ itself as well as ‘t’ 

•  Some simple DEQs depend upon only the differentials and no 
independent variables 
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Numerical solvers 
•  Convert numerical integration methods into 

differential equation solvers 

–  Rectangle Rule à Euler Method 

–  Trapezium Rule à  Heun’s Rule RK2 

–  Simpson’s Rule à Runge Kutta RK4 
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Explicit Methods 
•  This week we are looking at explicit methods of  

solving DEQs.  

•  This means that we use a formula to explicitly 
derive the quantity Xt+Δt as a function of  Xt, t 

•  There are also implicit methods, but we’ll not talk 
about them for now… 
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Euler’s Method 
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Euler’s method 
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•  Given a DEQ for x: 

•  The gradient is defined by the following limit 

•  So for a small value of  Δt we can rearrange to solve 
the equation: 
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Radioactive Decay 
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Radioactive Decay 
•  A population of  unstable nuclei undergoes 

radioactive decay 

•  A single nuclei decays at a random time 

•  The ‘continuum behaviour’ of  this random 
process can be described by an ODE 
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Radioactive Decay 
•  total population of  nuclei: N 

•  Half-life decay process      t1/2 

•  Define mean lifetime of  a nuclei:             

    τ = t1/2 / ln(2) 

•  DEQ           f(n,t) = dN/dt = - N / τ   	

•  Analytical solution:   N(t) = N0e-t/ τ	
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Start at T0 
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1. Initial conditions – N0 

2. Calculate dN/dt = -N0/τ	

Timestep 

        Δt 



Timestep 

14 3. Assume dN/dt constant 

-  rectangle rule 

4.   dN = (dN/dt)Δt 

5. Perform the timestep 
N1 = N0+(dN/dt)Δt 

1. Initial conditions – N0 
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Instability 
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Instability 
•  If  your step size (Δt) is to large, the 

assumptions we made break down and the 
numerical solution becomes numerically 
unstable 

•  If  an equation is susceptible to numerical 
instability, it is said to be stiff 
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Runge-Kutta 
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Runge-Kutta 
•  The Runge-Kutta methods are a family of  

techniques for solving ODEs  

•  Often people refer to the specific ‘RK4’ as ‘the 
Runge Kutta’ 

•  These methods are ‘predictor-corrector’ methods 
–  Predictor – a first rough estimate of  the next timestep 

–  Corrector – refine the approximation 

•  They offer better scaling of  error vs computational 
cost than Euler 
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Heun’s method – an RK2 
•  We want to improve upon Euler’s method 

 

•  If  we could integrate the DEQ with trapeziums 
instead of  rectangles we would get more accurate 
results 

•  But we only know X(t=0) and dx/dt at time t=0 (left 
of  trapezium) and not t=dt (right of  trapezium) 
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1. Initial conditions – N0 

-N0/τ	

At t=0 we know N0 at 
and can therefore find 
dN/dT 



The Problem 
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1. Initial conditions – N0 

-N0/τ	

NΔt 

-NΔt / τ	

At t=0 we know N0 at 
and can therefore find 
dN/dT 

 

However, we don’t 
know N at t=Δt (that’s 
what we’re trying to 
find!) and therefore 
we don’t know dN/dt 
at t=Δt.    

 

So we don’t know the 
height of the right 
hand side of our 
trapezium! 



The Solution 
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1. Initial conditions – N0 

-N0/τ	

N’Δt We use Euler’s 
method to predict a 
value for N at t=Δt, 
which we call N’ 

We then approximate 
dN/dt at t=Δt with dN’/
dt 

 

-N’Δt / τ	



The Solution 
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1. Initial conditions – N0 

-N0/τ	

N’Δt We use Euler’s 
method to predict a 
value for N at t=Dt, 
which we call N’ 

We then approximate 
dN/dt at t=Dt with dN’/
dt 

 

This first order 
estimate allows us to 
define the trapezium 
which we then use to 
refine our estimate of 
N at t=Δt 

-N’Δt / τ	



The Solution 
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1. Initial conditions – N0 

NΔt= N0+s 

s 
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The Solution 
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1. Initial conditions – N0 
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Heun / RK2 Recap 

39 

�  dx/dt=f(x,t) 

�  k0=f(x(t),t)     estimate rate at time t, xt 

� Use this estimate to find x at t+dt 

�  dx=k0 dt   so x(t+dt)= x(t)+k0 dt 

� Use this to estimate rate at time t+dt 

�  k1=f(x(t+dt),t+dt)   

�  x(t+dt) = x(t) + (k0+k1) dt/2 



Runge Kutta RK4 
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RK4 
•  RK4 is commonly used 

•  It is often referred to as just ‘the 
Runge Kutta’ 

•  This is broadly analogous to 
Simpson’s rule as applied to 
DEQs 

•  If you use RK4 with a standard 
equation – f(t) – it simplifies 
down to Simpson’s rule 

Given the DEQ: 
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Finally apply the timestep: 
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Accuracy 
•  Two types of error 

–  Error per step (step size of Δt) 
–  Total error 

•  Smaller steps means  
–  Less error per step 
–  but worse total error because more steps! 

Method name Function evaluations Error per step (order) Total error (order) 
Euler 1 Δt2 Δt 
Heun 2 Δt3 Δt2 
RK4 4 Δt5 Δt4 
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Weekly Problem 3 
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Weekly Assessments… 
•  Computational Physics has: 

–  No exam 
–  No ‘lab report’ 

•  Just weekly assessments 
–  So far they are going well 

•  You should spend perhaps  
–  0.5-2 hours/week on the problem as homework 
–  1 hour/week in your allotted workshop 
–  BUT MORE CHALLENGING AS WE GO ON  
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Weekly Problem 3 
•  Implementing Euler’s method and Heun’s method 

solvers for radioactive decay 

•  Comparing analytical and numerical models 

 

•  Plotting  
–  Decay curves 
–  Error of  numerical methods 
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Preparation 
•  Put some time into the problem before your 

workshop session 
–  Then you will know where you need help at the start of  the 

session… 
–  … so you are much more likely to get that help and benefit 

from the session 

•  Read the whole problem 
–  Look at the example code before you start 
–  Draw parallels to the work you have already done 
–  Look at past model solutions 

–  Get Euler working first! 

–  WORKSHOPS GIVE YOU HELP! 
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Adaptive Step Size 
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The problem 
•  Imagine a function to be integrated or an ODE to be 

solved 
–  Some areas vary rapidly 
–  Some vary slowly 

•  We want to integrate to some specified accuracy 

f(x)

x
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The problem 
•  Rapidly changing areas need small panels to be 

integrated accurately 
•  These small panels aren’t needed for slowly varying 

areas 
–  These unneeded panels slow us down (Speed is king!) 

f(x)

x
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The Solution 
•  Adaptive Step Size 
•  We adjust the size/density of panels to match the 

function 
–  Tolerance driven 
–  Examine derivatives – more curvature => smaller panels 

f(x)

x
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