L2 Computational Physics Week 3 - $1^{\text {st }}$ order ODEs

- To view slide-by-slide animations in this PDF, do not view it in your web browser
- Save it to disk
- View "Full Screen" on Acrobat / Windows - [CTRL+L]
- "View / Single page" then optionally "View /Enter Full Screen" in OS X/Previews

Differential Equations

Numerical Solvers

Background

- What sets differential equations apart from numerical integration?
- Function depends upon itself
- Often a DEQ is not solvable by analytical techniques
> Use numerical approximations

DEQ's everywhere

- Physics
- N-body problem (Newton's second law)
- Fluid Dynamics (Navier-Stokes equation)
- Wave Equation
- Electromagnetism (Maxwell's equations)
- General Relativity (Einstien's Field Equation)
- Ballistics (Newton, friction)
- Economics
- Biology
- Everywhere!

Differential equations

- Equation for variable ' x ' depends on independent variable ' t ' $\frac{d x}{d t}=f(t)$
- An ordinary differential equation (ODE) for variable ' x ' depends on the value of ' x ' itself as well as ' t '

$$
\frac{d x}{d t}=f(x(t), t)
$$

- Some simple DEQs depend upon only the differentials and no independent variables

$$
\frac{d x}{d t}=f(x(t))
$$

Numerical solvers

- Convert numerical integration methods into differential equation solvers
- Rectangle Rule \rightarrow Euler Method
- Trapezium Rule \rightarrow Heun's Rule RK2
- Simpson's Rule \rightarrow Runge Kutta RK4

Explicit Methods

- This week we are looking at explicit methods of solving DEQs.
- This means that we use a formula to explicitly derive the quantity $X_{t+\Delta t}$ as a function of X_{t}, t
- There are also implicit methods, but we'll not talk about them for now...

Euler's Method

Euler's method

- Given a DEQ for x :

$$
\frac{d x}{d t}=f\left(x_{t}, t\right)
$$

- The gradient is defined by the following limit

$$
\frac{d x}{d t}=f\left(x_{t}, t\right) \underset{\Delta t \rightarrow 0}{\lim } \frac{x_{t+\Delta t}-x_{t}}{\Delta t}
$$

- So for a small value of Δt we can rearrange to solve the equation:

$$
x_{t+\Delta t} \approx x_{t}+f\left(x_{t}, t\right) \Delta t
$$

Radioactive Decay

Radioactive Decay

A population of unstable nuclei undergoes radioactive decay

A single nuclei decays at a random time

- The 'continuum behaviour' of this random process can be described by an ODE

Radioactive Decay

- total population of nuclei: N
- Half-life decay process $t_{1 / 2}$
- Define mean lifetime of a nuclei:

$$
\tau=t_{1 / 2} / \ln (2)
$$

- DEQ
$f(n, t)=d N / d t=-N / \tau$
- Analytical solution: $N(t)=N_{0} e^{-t / \tau}$

Start at T_{0}

1. Initial conditions - \mathbf{N}_{0}

2. Calculate $d N / d t=-N_{0} / \tau$

Timestep

1. Initial conditions $-\mathrm{N}_{0}$
2. Perform the timestep
$\mathrm{N}_{1}=\mathrm{N}_{\mathbf{0}}+(\mathrm{dN} / \mathrm{dt}) \Delta \mathrm{t}$

3. Assume dN/dt constant

- rectangle rule

Instability

Instability

- If your step size (Δt) is to large, the assumptions we made break down and the numerical solution becomes numerically unstable
- If an equation is susceptible to numerical instability, it is said to be stiff

Runge-Kutta

Runge-Kutta

- The Runge-Kutta methods are a family of techniques for solving ODEs
- Often people refer to the specific 'RK4’ as 'the Runge Kutta'
- These methods are 'predictor-corrector' methods
- Predictor - a first rough estimate of the next timestep
- Corrector - refine the approximation
- They offer better scaling of error vs computational cost than Euler

Heun's method - an RK2

- We want to improve upon Euler's method
- If we could integrate the DEQ with trapeziums instead of rectangles we would get more accurate results
- But we only know $X(t=0)$ and $d x / d t$ at time $t=0$ (left of trapezium) and not $t=d t$ (right of trapezium)

1. Initial conditions - \mathbf{N}_{0}

$-\mathrm{N}_{0} \tau$

At $\mathrm{t}=0$ we know N_{0} at and can therefore find dN/dT

The Problem

1. Initial conditions $-\mathbf{N}_{0}$

At $\mathrm{t}=0$ we know N_{0} at and can therefore find dN/dT

However, we don' t know N at $t=\Delta t$ (that's what we' re trying to find!) and therefore we don't know dN/dt at $t=\Delta t$.

So we don't know the height of the right hand side of our trapezium!

The Solution

1. Initial conditions $-\mathbf{N}_{0}$

We use Euler's method to predict a value for N at $t=\Delta t$, which we call ${ }^{\prime}$ '

We then approximate $d N / d t$ at $t=\Delta t$ with $d N^{\prime} /$ dt

The Solution

This first order estimate allows us to define the trapezium which we then use to refine our estimate of N at $\mathrm{t}=\Delta \mathrm{t}$

The Solution

1. Initial conditions $-\mathbf{N}_{0}$

The Solution

1. Initial conditions $\mathbf{-} \mathbf{N}_{\mathbf{0}}$

$$
\begin{aligned}
& k_{0}=f\left(N_{0}\right) \\
& k_{1}=f\left(N_{0}+k_{0} \Delta t\right) \\
& N_{\Delta t}=N_{0}+\frac{\Delta t}{2}\left(k_{0}+k_{1}\right)
\end{aligned}
$$

Heun / RK2 Recap

- $d x / d t=f(x, t)$
- $\mathrm{kO}=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{t}) \quad$ estimate rate at time t, xt
- Use this estimate to find x at $t+d t$
- $d x=k 0 d t$ so $x(t+d t)=x(t)+k 0 d t$
- Use this to estimate rate at time t+dt
- $k 1=f(x(t+d t), t+d t)$
- $x(t+d t)=x(t)+(k 0+k 1) d t / 2$

Runge Kutta RK4

RK4

Given the DEQ:

- RK4 is commonly used
- It is often referred to as just "the $\frac{d x}{d t}=f\left(x_{t}, t\right)$ Runge Kutta'

Calculate the following intermediate variables:

- This is broadly analogous to Simpson' s rule as applied to DEQs
- If you use RK4 with a standard equation $-\mathrm{f}(\mathrm{t})-\mathrm{it}$, simplifies down to Simpson's rule
$k_{1}=f\left(x_{t}, t\right)$
$k_{2}=f\left(x_{t}+\frac{\Delta t}{2} k_{1}, t+\frac{\Delta t}{2}\right)$
$k_{3}=f\left(x_{t}+\frac{\Delta t}{2} k_{2}, t+\frac{\Delta t}{2}\right)$
$k_{4}=f\left(x_{t}+\Delta t \cdot k_{3}, t+\Delta t\right)$
Finally apply the timestep:

$$
x_{t+\Delta t}=x_{t}+\frac{\Delta t}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

Accuracy

- Two types of error
- Error per step (step size of Δt)
- Total error
- Smaller steps means
- Less error per step
- but worse total error because more steps!

Method name	Function evaluations	Error per step (order)	Total error (order)
Euler	1	Δt^{2}	Δt
Heun	2	Δt^{3}	Δt^{2}
RK4	4	Δt^{5}	Δt^{4}

Weekly Problem 3

Weekly Assessments...

- Computational Physics has:
- No exam
- No 'lab report'
- Just weekly assessments
- So far they are going well
- You should spend perhaps
- 0.5-2 hours/week on the problem as homework
- 1 hour/week in your allotted workshop
- BUT MORE CHALLENGING AS WE GO ON

Weekly Problem 3

- Implementing Euler's method and Heun's method solvers for radioactive decay
- Comparing analytical and numerical models
- Plotting
- Decay curves
- Error of numerical methods

Preparation

- Put some time into the problem before your workshop session
- Then you will know where you need help at the start of the session...
- ... so you are much more likely to get that help and benefit from the session
- Read the whole problem
- Look at the example code before you start
- Draw parallels to the work you have already done
- Look at past model solutions
- Get Euler working first!
- WORKSHOPS GIVE YOU HELP!

Adaptive Step Size

The problem

- Imagine a function to be integrated or an ODE to be solved
- Some areas vary rapidly
- Some vary slowly
- We want to integrate to some specified accuracy

The problem

- Rapidly changing areas need small panels to be integrated accurately
- These small panels aren't needed for slowly varying areas
- These unneeded panels slow us down (Speed is king!)

The Solution

- Adaptive Step Size
- We adjust the size/density of panels to match the function
- Tolerance driven
- Examine derivatives - more curvature $=>$ smaller panels

