L2 Computational Physics
Week 3 — 1st order ODEs
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Differential Equations

Numerical Solvers



Background

* What sets differential equations apart from
numerical integration?

* Function depends upon itself

* Often a DEQ is not solvable by analytical techniques
» Use numerical approximations



DEQ’ s everywhere

* Physics
— N-body problem (Newton’ s second law)
— Fluid Dynamics (Navier-Stokes equation)
— Wave Equation
— Electromagnetism (Maxwell’ s equations)
— General Relativity (Einstien’ s Field Equation)
— Ballistics (Newton, friction)

e Economics
- Biology

* Everywhere!



Differential equations

Equation for variable ‘x’ depends on independent variable ‘t’

0

dt
An ordinary differential equation (ODE) for variable ‘x’
depends on the value of ‘x’ itself as well as ‘t’

dx
i S (x(@),1)

Some simple DEQs depend upon only the differentials and no
independent variables

dx

— =/ (x(0)



Numerical solvers

* Convert numerical integration methods into
differential equation solvers

— Rectangle Rule - Euler Method
— Trapezium Rule 2 Heun’s Rule RK2

— Simpson’ s Rule 2 Runge Kutta RK4



Explicit Methods

* This week we are looking at explicit methods of
solving DEQs.

* This means that we use a formula to explicitly
derive the quantity X,,,, as a function of X, ¢

* There are also implicit methods, but we'll not talk
about them for now...



Euler’'s Method



Fuler s method
Given a DEQ for x:

dx
E = f(xt,t)

The gradient is defined by the following limit

[+Af X

a—o At

lim
X 4

dx
E = f(xt,t)

So for a small value of At we can rearrange to solve
the equation:
~x, + f(x,,1)At

xt+At



Radioactive Decay



Radioactive Decay

A population of unstable nuclei undergoes
radioactive decay

A single nuclei decays at a random time

The ‘continuum behaviour’ of this random
process can be described by an ODE



Radioactive Decay

total population of nuclei: N
"alf-life decay process  t;,,

Define mean lifetime of a nuclei:
T=t1/2/ |I’1(2)

DEQ fn,t) = dN/dt=-N/t
Analytical solution: N(t) = N,et



Start at T,

1. Initial conditions — N,
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Timestep

5. Perform the timestep
N, = N,+(dN/dt)At
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Instability



Instability

* |f your step size (At) is to large, the
assumptions we made break down and the

numerical solution becomes numerically
unstable

* |f an equation Is susceptible to numerical
instability, it Is said to be stiff



N - number of atoms

1000

800

600

400

200

—-200

—400

—-600

I

I

I

|

Euler dt=1.0s
analytic

20
Time (days)

40




N - number of atoms
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N - number of atoms
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N - number of atoms
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N - number of atoms
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N - number of atoms
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N - number of atoms
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N - number of atoms
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Runge-Kutta



Runge-Kutta

The Runge-Kutta methods are a family of
techniques for solving ODEs

Often people refer to the specific ‘RK4™ as ‘the
Runge Kutta’

These methods are ‘predictor-corrector’ methods
— Predictor — a first rough estimate of the next timestep
— Corrector - refine the approximation

They offer better scaling of error vs computational
cost than Euler



Heun s method — an RK?2

- We want to improve upon Euler’s method

* |f we could integrate the DEQ with trapeziums

Instead of rectangles we would get more accurate
results

* But we only know X(t=0) and dx/dt at time t=0 (left
of trapezium) and not t=dt (right of trapezium)
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1. Initial conditions — N,
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The Problem

1. Initial conditions — N,
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f(x) = dN/dt
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However, we don’ t
know N at t=At (that’ s
what we’ re trying to
find!) and therefore
we don’ t know dN/dt
at t=At.

So we don’ t know the
height of the right
hand side of our
trapezium!



The Solution

1. Initial conditions — N, N’ We use Euler’ s
- - : : . method to predict a
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The Solution
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The Solution

1. Initial conditions — N,
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The Solution

1. Initial conditions — N,
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Heun / RK2 Recap

o dx/dt=f(x,t)

® KO=f(x(t),t) estimate rate at time t, xt
® Use this estimate to find x at t+dt

® dx=kO dt so x(t+dt)= x(t)+kO dt

® Use this to estimate rate at time t+dt

o kl=f(x(t+dt),t+dt)

o x(t+dt) = x(t) + (kO+k1) dt/2



Runge Kutta RK4



RK4

Given the DEQ:
RK4 is commonly used

dx

= f (xw ! )
It is often referred to as just ‘the dr

Runge Kutta’
Calculate the following intermediate variables:

This 1s broadly analogous to
Simpson’ s rule as applied to

DEQs
k= f(x +—k1,t+—)
If you use RK4 with a standard
equation — f(t) — 1t simplities
down to Simpson’ s rule k=11 x, "' kz,t +

k4=f X +Atk3,t+At)

t

Finally apply the timestep:

xt+At

A6(k +2k, + 2k, +k,)



Accuracy

Two types of error
— Error per step (step size of At)
— Total error

Smaller steps means
— Less error per step
— but worse total error because more steps!

Method name | Function evaluations | Error per step (order) | Total error (order)

Euler | At At

Heun p) A At?

RK4 4 A Att




Weekly Problem 3



Weekly Assessments...

» Computational Physics has:
— No exam
— No ‘lab report’

* Just weekly assessments
— So far they are going well

* You should spend perhaps
— 0.5-2 hours/week on the problem as homework
— 1 hour/week in your allotted workshop
— BUT MORE CHALLENGING AS WE GO ON



Weekly Problem 3

* Implementing Euler’'s method and Heun’s method
solvers for radioactive decay

» Comparing analytical and numerical models

* Plotting
— Decay curves
— Error of nhumerical methods



Preparation

* Put some time into the problem before your
workshop session

— Then you will know where you need help at the start of the
session...

— ... SO0 you are much more likely to get that help and benefit
from the session

* Read the whole problem

— Look at the example code before you start
— Draw parallels to the work you have already done

— Look at past model solutions
— Get Euler working first!

— WORKSHOPS GIVE YOU HELP!



Adaptive Step Size



The problem

Imagine a function to be integrated or an ODE to be

solved

— Some areas vary rapidly

— Some vary slowly

We want to integrate to some specified accuracy

£(x)

L\/mf\ﬂ




The problem

* Rapidly changing areas need small panels to be
integrated accurately

* These small panels aren’t needed for slowly varying
areas

— These unneeded panels slow us down (Speed 1s king!)

il

f(x)

™




The Solution

* Adaptive Step Size

* We adjust the size/density of panels to match the
function

— Tolerance driven
— Examine derivatives — more curvature => smaller panels

£(x)

-1




