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Week 5 
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Monte Carlo Methods 



Overview   
�  Background / motivation 

�  Monte Carlo Methods 

�  Coin Tossing 
�  Breakout – random numbers 

�  Breakout – random number generation 

�  Radioactive Decay 

�  Monte Carlo Integration 
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Setting the scene 
Limitations of  Differential Equations 
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Think back – Radioactive 
decay 

•  Decay rate of  N atoms of  mean lifetime τ  

•  Analytical solution   

 

 

•  You used DEQ solvers to numerically solve the 
equation 
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dn
dt
= −

N
τ

N(t) = N0e
−t/τ



Let’s model a system 
• 1000 atoms 

• Half life: 20.8 hours 

• Analytic and DEQ solvers 
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What’s wrong with this? 
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Why is this unphysical? 
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Why is this unphysical? 
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time  |   analytic|     heun 
------+-----------+----------- 
     0|   1000.000|   1000.000 
     1|    959.264|    959.276 
     2|    920.188|    920.210 
     3|    882.703|    882.736 
     4|    846.745|    846.787 
     6|    812.252|    812.303 
     7|    779.165|    779.222 
     8|    747.425|    747.489 
     9|    716.978|    717.049 
    10|    687.771|    687.847 
    12|    659.754|    659.836 
    13|    632.878|    632.964 
    14|    607.097|    607.188 
    15|    582.367|    582.460 
    16|    558.644|    558.740 
    18|    535.887|    535.986 
    19|    514.057|    514.159 
    20|    493.116|    493.220 
    21|    473.029|    473.134 
    22|    453.760|    453.866 



What’s going on? 
•  The differential equation describes the continuum 

behaviour of  the population 

•  It’s not possible to write an equation for the decay 
of  a single atom 
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What’s going on? 
•  The differential equation describes the continuum 

behaviour of  the population 

•  It’s not possible to write an equation for the decay 
of  a single atom 

•  A single atom decays at a random, unpredictable 
time 
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Monte Carlo Methods 
Using randomness 
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Monte Carlo Methods 
•  A family of  techniques that use randomness 

•  Named inspired by the Casino de Monte-Carlo 

•  MC methods are used when: 
–  Deterministic  solution is not viable (analytical, DEQ, …) 

–  Deterministic solution is to slow 

–  Real, important complexity is introduced by the stochastic 
behaviour 
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Coin Tossing 
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Coin Tossing 
•  About as simple as it gets 

•  P(heads) = P(tails) = 0.5 

•  Continuum behaviour 
–  Number of  heads in ‘N’ tosses = N*P(heads) 
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How does a computer toss a 
coin? 

x = a random number between 0 and 1 

 

if x > P(heads): 

 print “Heads” 

else: 

 print “tails” 

 

That’s pretty simple, but where does our random number 
come from? 
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Randomness 
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What is it? 

Where does it come from? 



Certainty 
•  A Turing Machine is a deterministic system based on 

logic and mathematics 

 

•  Perhaps this is why a CPU will never truly achieve 
consciousness 
•  Important area of  emerging research? 
•  What is consciousness?  Is consciousness computable?  

Is it classical Physics?  Is it quantum?   

•  So, how does this system get random numbers? 
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True random numbers 
•  True random numbers 

must come from outside 
our digital computer 

 
–  Point a Geiger counter at a 

radioactive source, use the 
intervals between particle 
detection 

 
–  Listen to the CMB 

radiation  
 

–  Measure thermal noise in 
an electric or photonic 
current 
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Pseudo Random Number Generator 
 

•  A PRNG is an algorithm that generates a very long, 
but finite, series of  apparently random numbers 

 

•  These are often good-enough 

•  Let’s take a few minutes to understand what they are 
and how they work 
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Pseudo Random Number Generator 
•  There are many types of  PRNG 

•  Each one is an algorithm that, given a number, produces 
another, apparently unconnected number 

 r0 = inititial_random_number (seed) 

 r1 = f(r0), r2 = f(r1) r 3= f(r2) etc 

•  This sequence of  values, r0, r1,r2, … is in fact 100% 
deterministic and predictable given a-priori knowledge  
–  the numbers produced are seemingly random and bias free 

–  good enough for most things! 
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Black Box 
�  Python and Numpy both provide modules for random 

numbers 

�  Random.random() 
�  numpy.random() 
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Random Numbers in Python 
•  Python has a built in module ‘random’ 

•  Generates a single random number 
–  Uniform distribution 
•  0 <= random.random() <= 1 
•  a <= random.randint(a, b) <= b 

–  Normal distribution 
•  random.normalvariate(mu, sigma) 

– Many more 
•  See the docs 
•  http://docs.python.org/library/random.html 
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Seeding 
•  A PRNG is actually deterministic 

•  Given a certain value, the next one is defined 

•  A PRNG needs initialising or ‘seeding’ with a value 
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In the olden days… 
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Every time the computer 
booted, the PRNG reverted to 
the start of the sequence 
 
The ‘random’ numbers were 
predictable 
 
Imagine if: 

the ‘random’ movements of the 
characters a game were 
predictable 
The ‘random’ numbers used for 
an encryption key could be 
predicted 
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First go 
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Second go 
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Solution 
•  Initialise the PRNG to a location in its sequence 

derived from the current time or some other 
convenient ‘random’ number 

•  This happens automatically with some modern 
programming environments 

•  Generating one “high entropy” random seed 
unlocks a “good enough” sequence of  PRNs 
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Why do we care? 
•  Some environments automatically ‘randomize 

time’ 

•  Some don't – beware and check this! 

•  If  you think debugging is difficult, wait until you 
try and debug a program with random 
numbers! 
–  Using the same seed when debugging means at least 

the program gets the same data each time… 
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Random numbers in 
Numpy 
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numpy.random.uniform 

32 



numpy.random.normal 
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numpy.random.poison 
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More reading… 
�  Histograms in matplotlib 

 
http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/histogram_demo.py 

�  Python ‘random’ module  
 
http://docs.python.org/library/random.html 

�  Numpy ‘random’ module 
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Coin tossing 
•  So now that we know all about how to get random 

numbers, let’s simulate tossing a coin 

•  “What fraction of  coin tosses are heads?” 
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The program 
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The results 
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Run it again 
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And again 
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41 
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43 
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45 
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pyplot.errorbar 
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Law of  Large Numbers 
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The more times we perform a stochastic experiment (tossing 
our coin), the closer the experimental average will tend to fall 
to the expected value 

Central limit theorem 

Error (standard deviation) scales as 1/sqrt(N) 

 



Radioactive Decay 
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total population of  nuclei: 
N 

 

Half-life decay process 
t1/2 

 

Define mean lifetime of  a nuclei: 
τ = t1/2 / ln(2) 

 

DEQ 
f(n,t) = dN/dt = - N / τ	

 

Analytical solution: 
N(t) = N0e-t/ τ	
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Radioactive Decay 



total population of  nuclei: 
N 

 

Half-life decay process 
t1/2 

 

Define mean lifetime of  a nuclei: 
τ = t1/2 / ln(2) 

 

DEQ 
f(n,t) = dN/dt = - N / τ	

 

Analytical solution: 
N(t) = N0e-t/ τ	
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P(no decay) in one half-life is 0.5 
 
 
P(no decay) in time t is e-t/τ	

 
 

P(decay) = 1 – P(no decay) 
	

Radioactive Decay 



Radioactive Decay 
Initialise 160 atoms to ‘undecayed’ 

Let halflife = 1 

Let timestep = 1 

 

For time in range(0, 10, timestep): 

 for each atom: 

  if random() <= p(decay): 

   atom decays 

 count number of undecayed atoms 

 

plot number vs time 
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Repeat runs  
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Decay Chain 
blue à red à unseen 
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Interactive Monte 
Carlo simulation 

Radioactive Decay 
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Classroom excercise 
You are the atoms 
 
Divide time into equally spaced timepoints 
 
dt = t1/2 = 1 
 
You are the random number generator 

Toss a coin  
Heads Decay / Tails don’t decay in each timestep 

 
 

56 



Results 
linear plot 
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Results 
semilogy 
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Monte Carlo 
Integration 
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Monte Carlo Integration 
�  Methods for integrating using random numbers 

�  Random Sampling 

�  Hit and Miss 

�  Accuracy scales as 1/sqrt(n) 
�  Regardless of  D, the number of  dimensions 

integrated over. 

�  Computationally expensive compared for small D 
�  Efficient for high D 

�  Further reading – Numerical Recipes in C, §7.6 
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Hit and Miss to find π 
�  See blackboard 
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