L2 Computational Physics

Week 5

Monte Carlo Methods

Overview

- Background / motivation
- Monte Carlo Methods
- Coin Tossing
 - Breakout random numbers
 - Breakout random number generation
- Radioactive Decay
- Monte Carlo Integration

Setting the scene

Limitations of Differential Equations

Think back – Radioactive decay

• Decay rate of N atoms of mean lifetime τ

$$\frac{dn}{dt} = -\frac{N}{\tau}$$

• Analytical solution

$$N(t) = N_0 e^{-t/\tau}$$

• You used DEQ solvers to numerically solve the equation

Let's model a system

•1000 atoms

•Half life: 20.8 hours

•Analytic and DEQ solvers

What's wrong with this?

Why is this unphysical?

Why is this unphysical?

time	analytic	heun
0	1000.000	1000.000
1	959.264	959.276
2	920.188	920.210
3	882.703	882.736
4	846.745	846.787
6	812.252	812.303
7	779.165	779.222
8	747.425	747.489
9	716.978	717.049
10	687.771	687.847
12	659.754	659.836
13	632.878	632.964
14	607.097	607.188
15	582.367	582.460
16	558.644	558.740
18	535.887	535.986
19	514.057	514.159
20	493.116	493.220
21	473.029	473.134
22	453.760	453.866

What's going on?

• The differential equation describes the *continuum behaviour* of the population

• It's not possible to write an equation for the decay of a single atom

What's going on?

• The differential equation describes the *continuum behaviour* of the population

• It's not possible to write an equation for the decay of a single atom

A single atom decays at a random, unpredictable time

Monte Carlo Methods

Using randomness

Monte Carlo Methods

- A family of techniques that use randomness
 - Named inspired by the Casino de Monte-Carlo
- MC methods are used when:
 - Deterministic solution is not viable (analytical, DEQ, ...)
 - Deterministic solution is to slow
 - Real, important complexity is introduced by the stochastic behaviour

Coin Tossing

Coin Tossing

• About as simple as it gets

• P(heads) = P(tails) = 0.5

• Continuum behaviour

Number of heads in 'N' tosses = N*P(heads)

How does a computer toss a coin?

x = a random number between 0 and 1

if x > P(heads):

print "Heads"

else:

print "tails"

That's pretty simple, but where does our random number come from?

Randomness

What is it?

Where does it come from?

Certainty

• A Turing Machine is a deterministic system based on logic and mathematics

- Perhaps this is why a CPU will never truly achieve consciousness
 - Important area of emerging research?
 - What is consciousness? Is consciousness computable? Is it classical Physics? Is it quantum?
- So, how does this system get random numbers?

True random numbers

- True random numbers must come from outside our digital computer
 - Point a Geiger counter at a radioactive source, use the intervals between particle detection
 - Listen to the CMB radiation
 - Measure thermal noise in an electric or photonic current

Pseudo Random Number Generator

• A PRNG is an algorithm that generates a very long, but finite, series of *apparently* random numbers

• These are often good-enough

 Let's take a few minutes to understand what they are and how they work

Pseudo Random Number Generator

- There are many types of PRNG
- Each one is an algorithm that, given a number, produces another, apparently unconnected number

r0 = initial_random_number (seed)

r1 = f(r0), r2 = f(r1) r 3 = f(r2) etc

- This sequence of values, r0, r1,r2, ... is in fact 100% deterministic and predictable given a-priori knowledge
 - the numbers produced are seemingly random and bias free
 - good enough for most things!

Black Box

- Python and Numpy both provide modules for random numbers
- Random.random()
- numpy.random()

Random Numbers in Python

- Python has a built in module 'random'
- Generates a single random number
 - Uniform distribution
 - 0 <= random.random() <= 1
 - a <= random.randint(a, b) <= b
 - Normal distribution
 - random.normalvariate(mu, sigma)
 - Many more
 - See the docs
 - <u>http://docs.python.org/library/random.html</u>

Seeding

• A PRNG is actually deterministic

• Given a certain value, the next one is defined

• A PRNG needs initialising or 'seeding' with a value

In the olden days...

Every time the computer booted, the PRNG reverted to the start of the sequence

The 'random' numbers were predictable

Imagine if:

the 'random' movements of the characters a game were predictable

The 'random' numbers used for an encryption key could be predicted

First go

```
Amstrad Microcomputer (v4)
 ©1985 Amstrad plc
and Locomotive Software Ltd.
 PARADOS V1.1. @1997 QUANTUM Solutions.
 BASIC 1.1
Ready
       "hello world"
world
      rnd
1940658
     f rnd
28612386
   int rnd
.021330127
Readu
```

Second go

```
Amstrad Microcomputer (v4)
 ©1985 Amstrad plc
and Locomotive Software Ltd.
 PARADOS V1.1. @1997 QUANTUM Solutions.
 BASIC 1.1
      "Lets try that again"
try that again
      rnd
1940658
     t rnd
28612386
   nt rnd
021330127
Readu
```

Solution

 Initialise the PRNG to a location in its sequence derived from the current time or some other convenient 'random' number

• This happens automatically with some modern programming environments

• Generating one "high entropy" random seed unlocks a "good enough" sequence of PRNs

Why do we care?

Some environments automatically 'randomize time'

• Some don't – beware and check this!

- If you think debugging is difficult, wait until you try and debug a program with random numbers!
 - Using the same seed when debugging means at least the program gets the same data each time...

Random numbers in Numpy

numpy.random.uniform

0	example7.1.py	R _M
1	example7.1.py	+
	A scalar sc	
	import numpy import numpy.random	
	N_RESULTS = 1000 dat = numpy.random.uniform(size=1000)	
	<pre>import matplotlib.pyplot as pyplot</pre>	
	<pre>values, bins = numpy.histogram(dat, 10) bins = bins[:-1] pyplot.xlabel('Value') pyplot.bar(bins, values, width=bins[1]-bins[0]) pyplot.title('numpy.random.unfiorm() distribution') pyplot.savefig('fig_71.png') pyplot.show()</pre>	

numpy.random.normal

000		example7.2.py	R _M
٦	example7.2.py		+
## ◄	example7.2.py No	Selection	
imp imp	ort numpy ort numpy.random		
N_R	ESULTS = 1000		
dat	= numpy.random.normal(s:	ize=1000, loc=0.5, scale=1)	
imp	ort matplotlib.pyplot as	pyplot	
val bin pyp pyp pyp pyp pyp	<pre>ues, bins = numpy.histog: s = bins[:-1] lot.xlabel('Value') lot.ylabel('Probability') lot.bar(bins, values, win lot.title('numpy.random.r lot.savefig('fig_72.png') lot.show()</pre>	ram(dat, 10)) dth=bins[1]-bins[0]) normal() distribution'))	

numpy.random.poison

More reading...

• Histograms in matplotlib

http://matplotlib.sourceforge.net/plot directive/mpl examples/pylab examples/histogram demo.py

• Python 'random' module

http://docs.python.org/library/random.html

• Numpy 'random' module

Coin tossing

• So now that we know all about how to get random numbers, let's simulate tossing a coin

• "What fraction of coin tosses are heads?"

The program

```
🖌 coins.py - G:/teaching/2010-2011/CompPhys/05 monte carlo method... 📃 🗖 🗙
File Edit Format Run Options Windows Help
from future import division
import random
import numpy
p_heads = 0.5 # probability of a heads
N TOSSES = 5  # number of times to toss coins
for toss in range(N TOSSES):
    if random.random() >= p heads:
        heads += 1
    else:
        tails += 1
frac heads = heads / N TOSSES
print 'The fraction of heads was: %.3f' % frac heads
                                                       Ln: 8 Col: 1
```

The results

Run it again

And again

pyplot.errorbar

Law of Large Numbers

The more times we perform a stochastic experiment (tossing our coin), the closer the experimental average will tend to fall to the *expected value*

Central limit theorem

Error (standard deviation) scales as 1/sqrt(N)

total population of nuclei:

Half-life decay process $t_{1/2}$

Define mean lifetime of a nuclei: $\tau = t_{1/2} / \ln(2)$

$$DEQ f(n,t) = dN/dt = -N / \tau$$

Analytical solution: $N(t) = N_0 e^{-t/\tau}$

total population of nuclei: N

P(no decay) in one half-life is 0.5

Half-life decay process $t_{1/2}$

P(no decay) in time t is $e^{-t/\tau}$

Define mean lifetime of a nuclei: $\tau = t_{1/2} / \ln(2)$

P(decay) = 1 - P(no decay)

$$DEQ f(n,t) = dN/dt = -N / \tau$$

Analytical solution: $N(t) = N_0 e^{-t/\tau}$

Initialise 160 atoms to 'undecayed'

Let halflife = 1

Let timestep = 1

For time in range(0, 10, timestep):

for each atom:

if random() <= p(decay):</pre>

atom decays

count number of undecayed atoms

plot number vs time

Repeat runs

Interactive Monte Carlo simulation

Radioactive Decay

Classroom excercise

You are the atoms

Divide time into equally spaced timepoints

 $dt = t_{1/2} = 1$

You are the random number generator

Toss a coin Heads Decay / Tails don't decay in each timestep

Results linear plot

Results semilogy

Monte Carlo Integration

Monte Carlo Integration

- Methods for integrating using random numbers
 - Random Sampling
 - Hit and Miss
- Accuracy scales as 1/sqrt(n)
 - Regardless of D, the number of dimensions integrated over.
 - Computationally expensive compared for small D
 - Efficient for high D
- Further reading Numerical Recipes in C, §7.6

Hit and Miss to find $\boldsymbol{\pi}$

• See blackboard

END OF LINE.