L2 Computational Physics

Week 5

Monte Carlo Methods

Overview

- Background / motivation
- Monte Carlo Methods
- Coin Tossing
- Breakout - random numbers
- Breakout - random number generation
- Radioactive Decay
- Monte Carlo Integration

Setting the scene
 Limitations of Differential Equations

Think back - Radioactive decay

- Decay rate of N atoms of mean lifetime τ

$$
\frac{d n}{d t}=-\frac{N}{\tau}
$$

- Analytical solution

$$
N(t)=N_{0} e^{-t / \tau}
$$

- You used DEQ solvers to numerically solve the equation

Let's model a system

-1000 atoms
-Half life: 20.8 hours

- Analytic and DEQ solvers

What's wrong with this?

Why is this unphysical?

Why is this unphysical?

time \|	analytic\|	heun
01	1000.0001	1000.000
11	959.264\|	959.276
21	920.188\|	920.210
31	882.7031	882.736
41	846.745\|	846.787
61	812.252 \|	812.303
71	779.165\|	779.222
81	747.4251	747.489
91	716.978\|	717.049
101	687.7711	687.847
12\|	659.7541	659.836
13\|	632.8781	632.964
14\|	607.0971	607.188
15\|	582.3671	582.460
16\|	558.6441	558.740
18\|	535.8871	535.986
19\|	514.0571	514.159
201	493.1161	493.220
211	473.0291	473.134
22\|	453.760 \|	453.866

What's going on?

- The differential equation describes the continuum behaviour of the population
- It's not possible to write an equation for the decay of a single atom

What's going on?

- The differential equation describes the continuum behaviour of the population
- It's not possible to write an equation for the decay of a single atom
- A single atom decays at a random, unpredictable time

Monte Carlo Methods

Using randomness

Monte Carlo Methods

- A family of techniques that use randomness
- Named inspired by the Casino de Monte-Carlo
- MC methods are used when:
- Deterministic solution is not viable (analytical, DEQ, ...)
- Deterministic solution is to slow
- Real, important complexity is introduced by the stochastic behaviour

Coin Tossing

Coin Tossing

- About as simple as it gets
- $P($ heads $)=P($ tails $)=0.5$
- Continuum behaviour
- Number of heads in ' N ' tosses $=$ N*P(heads)

How does a computer toss a coin?

$\mathrm{x}=\mathrm{a}$ random number between 0 and 1
if x > P(heads):
print "Heads"
else:
print "tails"

That's pretty simple, but where does our random number come from?

Randomness

What is it?
Where does it come from?

Certainty

- A Turing Machine is a deterministic system based on logic and mathematics
- Perhaps this is why a CPU will never truly achieve consciousness
- Important area of emerging research?
- What is consciousness? Is consciousness computable? Is it classical Physics? Is it quantum?
- So, how does this system get random numbers?

True random numbers

- True random numbers must come from outside our digital computer
- Point a Geiger counter at a radioactive source, use the intervals between particle detection
- Listen to the CMB radiation
- Measure thermal noise in an electric or photonic current

Pseudo Random Number Generator

- A PRNG is an algorithm that generates a very long, but finite, series of apparently random numbers
- These are often good-enough
- Let's take a few minutes to understand what they are and how they work

Pseudo Random Number Generator

- There are many types of PRNG
- Each one is an algorithm that, given a number, produces another, apparently unconnected number

$$
\begin{aligned}
& r 0=\text { inititial_random_number }(\text { seed }) \\
& r 1=f(r 0), r 2=f(r 1) \text { r } 3=f(r 2) \text { etc }
\end{aligned}
$$

- This sequence of values, r0, r1,r2, ... is in fact 100% deterministic and predictable given a-priori knowledge
- the numbers produced are seemingly random and bias free
- good enough for most things!

Black Box

- Python and Numpy both provide modules for random numbers
- Random.random()
- numpy.random()

Random Numbers in Python

- Python has a built in module 'random'
- Generates a single random number
- Uniform distribution
- $0<=$ random.random() $<=1$
- a <= random.randint(a, b) <= b
- Normal distribution
- random.normalvariate(mu, sigma)
- Many more
- See the docs
- http://docs.python.org/library/random.html

Seeding

- A PRNG is actually deterministic
- Given a certain value, the next one is defined
- A PRNG needs initialising or 'seeding' with a value

In the olden days...

Every time the computer booted, the PRNG reverted to the start of the sequence

The 'random' numbers were predictable

Imagine if:
the 'random' movements of the characters a game were predictable
The 'random' numbers used for an encryption key could be predicted

First go

Amstrad Microcomputer (u\&)
91985 Amstrad ple and Locomotive Software Ltd. PARADOS U1.1. G1997 RUANTUM Solutions. BASIC 1.1.

Ready
print "hello world"
Ready
print rend
6. 271945658

Ready
print rind
(1. 528612386 Ready
print rind
日. 2 Z 13 B 127
Ready

Second go

Amstrad Microcomputer (u\&)
91985 Amstrad ple and Locomotive Software Ltd. PARADOS U1.1. G1997 QUANTUM Solutions. BASIC 1.1

Ready "Lets try that again"
print "Lets try that
Ready
print rond
6. 271940658

Ready
print rind
6.528612386

Ready
print rend
(1)2133612?

Ready

Solution

- Initialise the PRNG to a location in its sequence derived from the current time or some other convenient 'random' number
- This happens automatically with some modern programming environments
- Generating one "high entropy" random seed unlocks a "good enough" sequence of PRNs

Why do we care?

- Some environments automatically 'randomize time'
- Some don't - beware and check this!
- If you think debugging is difficult, wait until you try and debug a program with random numbers!
- Using the same seed when debugging means at least the program gets the same data each time...

Random numbers in Numpy

numpy.random.uniform

numpy.random.normal

$\bigcirc \bigcirc \bigcirc{ }^{\circ} \mathrm{O}$ example7.2.py	$12^{\text {a }}$
example7.2.py	+
!ㅐㄴ $\|>\| \square$ example7.2.py \rangle No Selection	
import numpy import numpy. random	
```N_RESULTS = 1000 dat = numpy.random.normal(size=1000, loc=0.5, scale=1)```	
import matplotlib.pyplot as pyplot	
values, bins $=$ numpy.histogram(dat, 10)	
bins = bins [: -1 ]	
pyplot.xlabel('Value')	
pyplot.ylabel('Probability')	
pyplot.bar(bins, values, width=bins [1]-bins [0])	
pyplot.title('numpy.random. normal() distribution')	
pyplot.savefig('fig_72.png')	
pyplot.show()	



## numpy.random.poison




## More reading...

- Histograms in matplotlib
http://matplotlib.sourceforge.net/plot directive/mpl examples/pylab examples/histogram demo.py
- Python 'random’ module
http://docs.python.org/library/random.html
- Numpy ‘random’ module


## Coin tossing

- So now that we know all about how to get random numbers, let's simulate tossing a coin
- "What fraction of coin tosses are heads?"


## The program

```
7 coins.py - Gi/teaching/2010-2011/CompPhys/05 monte carlo method... \(\quad-|\underline{|l|}|\)
File Edit Format Run Options Windows Help
 from __future__ import division
 import random
 import numpy
p_heads \(=0.5\) \# probability of a heads
N_TOSSES \(=5\) \# number of times to toss coins
for toss in range (N_TOSSES) :
 if random. random() >= p_heads:
 heads += 1
 else:
 tails += 1
frac_heads \(=\) heads / N_TOSSES
print 'The fraction of heads was: *.3f' \% frac_heads

\section*{The results}

\section*{Run it again}

\section*{And again}

\section*{pyplot.errorbar}

\section*{Law of Large Numbers}

The more times we perform a stochastic experiment (tossing our coin), the closer the experimental average will tend to fall to the expected value

Central limit theorem
Error (standard deviation) scales as \(1 /\) sqrt(N)

Radioactive Decay

\section*{Radioactive Decay}
total population of nuclei:

Half-life decay process
\(t_{1 / 2}\)

Define mean lifetime of a nuclei:
\[
\tau=t_{1 / 2} / \ln (2)
\]

DEQ
\[
f(n, t)=d N / d t=-N / \tau
\]

Analytical solution:
\[
N(t)=N_{0} e^{-t / \tau}
\]

\section*{Radioactive Decay}
total population of nuclei: N

Half-life decay process \(t_{1 / 2}\)

Define mean lifetime of a nuclei:
\(\tau=t_{1 / 2} / \ln (2)\)
\(P\) (no decay) in one half-life is 0.5
\(P(\) no decay \()\) in time \(t\) is \(e^{-t / \tau}\)
\(P(\) decay \()=1-P(\) no decay \()\)

DEQ
\(f(n, t)=d N / d t=-N / \tau\)

Analytical solution:
\[
N(t)=N_{0} e^{-t / \tau}
\]

\section*{Radioactive Decay}
```

Initialise 160 atoms to 'undecayed'
Let halflife = 1
Let timestep = 1
For time in range(0, 10, timestep):
for each atom:
if random() <= p(decay):
atom decays
count number of undecayed atoms

```
plot number vs time

\section*{Repeat runs}

\section*{Decay Chain blue \(\rightarrow\) red \(\rightarrow\) unseen}

\title{
Interactive Monte Carlo simulation \\ Radioactive Decay
}

\section*{Classroom excercise}

You are the atoms

Divide time into equally spaced timepoints
\(\mathrm{dt}=\mathrm{t}_{1 / 2}=1\)
You are the random number generator
Toss a coin
Heads Decay / Tails don't decay in each timestep

\section*{Results linear plot}

\section*{Results}

\section*{semilogy}

\section*{Monte Carlo Integration}

\section*{Monte Carlo Integration}
- Methods for integrating using random numbers
- Random Sampling
- Hit and Miss
- Accuracy scales as \(1 /\) sqrt(n)
- Regardless of D, the number of dimensions integrated over.
- Computationally expensive compared for small D
- Efficient for high D
- Further reading - Numerical Recipes in C, §7.6

\section*{Hit and Miss to find \(\pi\)}
- See blackboard

\section*{EHD DF LIHE}

62```

