
L2 Computational Physics

1

Week 5

2

Monte Carlo Methods

Overview
�  Background / motivation

�  Monte Carlo Methods

�  Coin Tossing
�  Breakout – random numbers

�  Breakout – random number generation

�  Radioactive Decay

�  Monte Carlo Integration

3

Setting the scene
Limitations of Differential Equations

4

Think back – Radioactive
decay

•  Decay rate of N atoms of mean lifetime τ

•  Analytical solution

•  You used DEQ solvers to numerically solve the
equation

5

dn
dt
= −

N
τ

N(t) = N0e
−t/τ

Let’s model a system
• 1000 atoms

• Half life: 20.8 hours

• Analytic and DEQ solvers

6

What’s wrong with this?

7

Why is this unphysical?

8

Why is this unphysical?

9

time | analytic| heun
------+-----------+-----------
 0| 1000.000| 1000.000
 1| 959.264| 959.276
 2| 920.188| 920.210
 3| 882.703| 882.736
 4| 846.745| 846.787
 6| 812.252| 812.303
 7| 779.165| 779.222
 8| 747.425| 747.489
 9| 716.978| 717.049
 10| 687.771| 687.847
 12| 659.754| 659.836
 13| 632.878| 632.964
 14| 607.097| 607.188
 15| 582.367| 582.460
 16| 558.644| 558.740
 18| 535.887| 535.986
 19| 514.057| 514.159
 20| 493.116| 493.220
 21| 473.029| 473.134
 22| 453.760| 453.866

What’s going on?
•  The differential equation describes the continuum

behaviour of the population

•  It’s not possible to write an equation for the decay
of a single atom

10

What’s going on?
•  The differential equation describes the continuum

behaviour of the population

•  It’s not possible to write an equation for the decay
of a single atom

•  A single atom decays at a random, unpredictable
time

11

Monte Carlo Methods
Using randomness

12

Monte Carlo Methods
•  A family of techniques that use randomness

•  Named inspired by the Casino de Monte-Carlo

•  MC methods are used when:
–  Deterministic solution is not viable (analytical, DEQ, …)

–  Deterministic solution is to slow

–  Real, important complexity is introduced by the stochastic
behaviour

13

Coin Tossing

14

Coin Tossing
•  About as simple as it gets

•  P(heads) = P(tails) = 0.5

•  Continuum behaviour
–  Number of heads in ‘N’ tosses = N*P(heads)

15

How does a computer toss a
coin?

x = a random number between 0 and 1

if x > P(heads):

 print “Heads”

else:

 print “tails”

That’s pretty simple, but where does our random number
come from?

16

Randomness

17

What is it?

Where does it come from?

Certainty
•  A Turing Machine is a deterministic system based on

logic and mathematics

•  Perhaps this is why a CPU will never truly achieve
consciousness
•  Important area of emerging research?
•  What is consciousness? Is consciousness computable?

Is it classical Physics? Is it quantum?

•  So, how does this system get random numbers?

18

True random numbers
•  True random numbers

must come from outside
our digital computer

–  Point a Geiger counter at a

radioactive source, use the
intervals between particle
detection

–  Listen to the CMB

radiation

–  Measure thermal noise in
an electric or photonic
current

19

Pseudo Random Number Generator

•  A PRNG is an algorithm that generates a very long,
but finite, series of apparently random numbers

•  These are often good-enough

•  Let’s take a few minutes to understand what they are
and how they work

20

Pseudo Random Number Generator
•  There are many types of PRNG

•  Each one is an algorithm that, given a number, produces
another, apparently unconnected number

 r0 = inititial_random_number (seed)

 r1 = f(r0), r2 = f(r1) r 3= f(r2) etc

•  This sequence of values, r0, r1,r2, … is in fact 100%
deterministic and predictable given a-priori knowledge
–  the numbers produced are seemingly random and bias free

–  good enough for most things!

21

Black Box
�  Python and Numpy both provide modules for random

numbers

�  Random.random()
�  numpy.random()

22

?inputs outputs

Random Numbers in Python
•  Python has a built in module ‘random’

•  Generates a single random number
–  Uniform distribution
•  0 <= random.random() <= 1
•  a <= random.randint(a, b) <= b

–  Normal distribution
•  random.normalvariate(mu, sigma)

– Many more
•  See the docs
•  http://docs.python.org/library/random.html

23

Seeding
•  A PRNG is actually deterministic

•  Given a certain value, the next one is defined

•  A PRNG needs initialising or ‘seeding’ with a value

24

In the olden days…

25

Every time the computer
booted, the PRNG reverted to
the start of the sequence

The ‘random’ numbers were
predictable

Imagine if:

the ‘random’ movements of the
characters a game were
predictable
The ‘random’ numbers used for
an encryption key could be
predicted

26

First go

27

Second go

28

Solution
•  Initialise the PRNG to a location in its sequence

derived from the current time or some other
convenient ‘random’ number

•  This happens automatically with some modern
programming environments

•  Generating one “high entropy” random seed
unlocks a “good enough” sequence of PRNs

29

Why do we care?
•  Some environments automatically ‘randomize

time’

•  Some don't – beware and check this!

•  If you think debugging is difficult, wait until you
try and debug a program with random
numbers!
–  Using the same seed when debugging means at least

the program gets the same data each time…

30

Random numbers in
Numpy

31

numpy.random.uniform

32

numpy.random.normal

33

numpy.random.poison

34

More reading…
�  Histograms in matplotlib

http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/histogram_demo.py

�  Python ‘random’ module

http://docs.python.org/library/random.html

�  Numpy ‘random’ module

35

Coin tossing
•  So now that we know all about how to get random

numbers, let’s simulate tossing a coin

•  “What fraction of coin tosses are heads?”

36

The program

37

The results

38

Run it again

39

And again

40

41

42

43

44

45

46

pyplot.errorbar

47

Law of Large Numbers

48

The more times we perform a stochastic experiment (tossing
our coin), the closer the experimental average will tend to fall
to the expected value

Central limit theorem

Error (standard deviation) scales as 1/sqrt(N)

Radioactive Decay

49

total population of nuclei:
N

Half-life decay process
t1/2

Define mean lifetime of a nuclei:
τ = t1/2 / ln(2)

DEQ
f(n,t) = dN/dt = - N / τ	

Analytical solution:
N(t) = N0e-t/ τ	

	

	 50

Radioactive Decay

total population of nuclei:
N

Half-life decay process
t1/2

Define mean lifetime of a nuclei:
τ = t1/2 / ln(2)

DEQ
f(n,t) = dN/dt = - N / τ	

Analytical solution:
N(t) = N0e-t/ τ	

	

	 51

P(no decay) in one half-life is 0.5

P(no decay) in time t is e-t/τ	

P(decay) = 1 – P(no decay)
	

Radioactive Decay

Radioactive Decay
Initialise 160 atoms to ‘undecayed’

Let halflife = 1

Let timestep = 1

For time in range(0, 10, timestep):

 for each atom:

 if random() <= p(decay):

 atom decays

 count number of undecayed atoms

plot number vs time

 52

Repeat runs

53

Decay Chain
blue à red à unseen

54

Interactive Monte
Carlo simulation

Radioactive Decay

55

Classroom excercise
You are the atoms

Divide time into equally spaced timepoints

dt = t1/2 = 1

You are the random number generator

Toss a coin
Heads Decay / Tails don’t decay in each timestep

56

Results
linear plot

57

Results
semilogy

58

Monte Carlo
Integration

59

Monte Carlo Integration
�  Methods for integrating using random numbers

�  Random Sampling

�  Hit and Miss

�  Accuracy scales as 1/sqrt(n)
�  Regardless of D, the number of dimensions

integrated over.

�  Computationally expensive compared for small D
�  Efficient for high D

�  Further reading – Numerical Recipes in C, §7.6

60

Hit and Miss to find π
�  See blackboard

61

62

