Random Walks

Random Walks

- A random walk is a trajectory made by taking successive random steps
- Random means direction of steps is uncorrelated
- These processes occur in many systems with:
- History / memory (integration of change)
- Randomness
- Biology, Physics, Mathematics, Finance

1D Random Walker

- As simple as it gets
- At fixed intervals we move either up or down by 1 unit with a 50/50 probability

1D - example

Bulk Behavior

- An individual example follows a random course
- However, we still have a "continuum behavior" - Just like radioactive decay

Bulk Behavior

Examining bulk properties

- $P(x, t)$
- <x>
- $\left\langle\left(x-x_{0}\right)^{2}\right\rangle$

Probability of position x at time t
Average position
Mean Square Displacement

$P(x, t)$

Monte-Carlo

Analytical Solution

- Simulation many thousands of particles over many timesteps
- See how many there are at each (x,t) and normalize to a probability
- Similar to your work last week

$P(x, t)$

Monte-Carlo

Analytical Solution

- Simulation many thousands of particles over many timesteps
- See how many there are at each (x, t) and normalize to a probability
- Pascal's triangle

$P(x, t)$

Diffusion

- A bulk statistical behavior emerges from the random motion
- Statistical Mechanics
- Diffusion
- The spread of particles
- From an area of high concentration
- To areas of Iow concentration
- Through random motion
- No directional force acts on the particles
- Disorder just increases because that is statistically more likely than disorder decreasing
- The arrow of time!

Mean Square Displacement

- MSD is a very useful way of characterizing diffusing systems
$\vec{r}_{i}(0)$
$\vec{r}_{i}(t)$
$\operatorname{msd} d(t)=\left\langle\left(r_{i}(t)-r_{i}(0)\right)^{2}\right\rangle$
position of particle i at time 0 position of particle i at time t
mean square displacement at time t
- The average of the square of the displacements many particles have moved
- A scalar quantity regardless of dimensionality

Aside - numpy.average

O

```
Ffrom __future__ import division
import matplotlib.pyplot as pyplot
import numpy
```

\# Example of using numpy to average trajectories
\# Let 's make 3 trajectoris of ' x ' at many timepoints
timebase $=$ numpy.arange (10)
$\mathrm{x} 0=$ timebase
$\times 1=1.5 *$ timebase $\#$ this one is faster
$\mathrm{x} 2=1.2 *$ timebase
\# Let's plot them
pyplot.figure()
pyplot.plot(timebase, $\times 0$, label='x0')
pyplot.plot(timebase, x1, label='x1')
pyplot.plot(timebase, $\times 2$, label='x2')
pyplot. xlabel('time')
pyplot. legend ()
pyplot.savefig('average_0.png')
pyplot.show()
\# make a list of trajectories
t_list $=[\times 0, \times 1, \times 2]$
\# average them
print numpy.average(t_list)

Aside - numpy.average

Ө○○ average0.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a...
Ifrom _future_ import division
import matplotlib. pyplot as pyplot
import numpy
\# Example of using numpy to average trajectories
\# Let's make 3 trajectoris of ' x ' at many timepoints
timebase $=$ numpy.arange(10)
$x 0=$ timebase
$\times 1=1.5 *$ timebase $\#$ this one is faster
$x 2=1.2 *$ timebase
\# Let's plot them
pyplot.figure()
pyplot.plot(timebase, $\times 0$, label $={ }^{\prime} \times 0^{\prime}$)
pyplot.plot(timebase, x1, label='x1')
pyplot.plot(timebase, $\times 2$, label='x2')
pyplot.xlabel('time')
pyplot. legend ()
pyplot.savefig('average_0.png')
pyplot.show()
\# make a list of trajectories
t_list $=[\times 0, \times 1, \times 2]$
average them
print numpy.average(t_list)
$\square-\infty$

Oh dear, it's averaged all the numbers at all timepoints

Aside - numpy.average

〇○○ average1.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a...

```
from __future_import division
import matplotlib.pyplot as pyplot
import numpy
# Example of using numpy to average trajectories
# Let's make 3 trajectoris of ' }\textrm{x}\mathrm{ ' at many timepoints
timebase = numpy.arange(10)
x0 = timebase
x1 = 1.5* timebase # this one is faster
x2 = 1.2* timebase
# Let's plot them
pyplot.figure()
pyplot.plot(timebase, x0, label='x0')
pyplot.plot(timebase, x1, label='x1')
pyplot.plot(timebase, x2, label='\times2')
pyplot.xlabel('time')
pyplot. legend()
pyplot.savefig('average_0.png')
pyplot.show()
# make a list of trajectories
t_list = [x0, x1, x2]
# average them
print numpy.average(t_list (axis=0) ,

This is more like it - all values at a single timepoint are averaged

\section*{Aside - numpy.average}
\(\bigcirc \bigcirc\) ○ average1.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a...



This is more like it - all values at a single timepoint are averaged
- Numpy reduction methods can take an axis= option which specifics to specify which axis/axes to reduce the data over
- e.g., numpy.sum, .min, .max, .std, .average
- Default is to reduce over all axes

\section*{Aside - numpy.average}

\section*{Ө ○ average2.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a.}
```

from _future_ import division
import matplotlib. pyplot as pyplot
import numpy

```
\# Example of using numpy to average trajectories
\# Let 's make 3 trajectoris of ' \(x\) ' at many timepoints
timebase \(=\) numpy.arange(10)
\(x 0=\) timebase
\(\times 1=1.5 *\) timebase \(\#\) this one is faster
\(x 2=1.2 *\) timebase
\# Let's plot them
pyplot.figure()
pyplot.plot(timebase, \(\times 0\), label='x0', color='grey')
pyplot.plot(timebase, x1, label='x1', color='grey')
pyplot.plot(timebase, \(\times 2\), label='x2', color='grey')
pyplot.xlabel('time')
\# make a list of trajectories
t_list \(=[x 0, \times 1, \times 2]\)
\# average them
avg = numpy.average(t_list, axis=0
pyplot.plot(timebase, avg, label='Average', color='red')
pyplot. legend()
pyplot.savefig('average_2|. png')
pyplot.show()


\section*{Mean Square Displacement}


\section*{Random Walks in the Wild}

\section*{Solar Radiation}


> Mean Free Path of a photon in the radiation zone is \(\sim 1 \mathrm{~cm}\)

It takes an average of > 50,000 years for one photon to escape the radiation zone

\section*{Brownian Motion}
- Discovered in 1827 boy Robert Brown
- Botanist studying pollen under a microscope
- He noticed they appeared to move randomly without a cause
- Actually, collisions with molecules in the medium

\section*{Brownian Motion}
- Albert Einstein published a paper in 1905 describing the statistical mechanics behind Brownian Motion
- One of his great annus mirabilis papers
- "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen"
- "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat"
- http://users.physik.fu-berlin.de/~kleinert/files/ eins brownian.pdf
- (English translation)

\section*{Brownian Motion}
- There is a simple mathematical relationship between:
- Size of a particle
- The density and temperature of the fluid it is in
- The strength and timescales of Brownian motion it experiences
- This allows Brownian motion to be used to determine the size of particles from \(\sim 1 \mathrm{~nm}\) to \(\sim 100 \mu \mathrm{~m}\) through dynamic lights scattering, optical tweezing and microrheology
- http://www.youtube.com/watch?v=cDcprgWiQEY

\section*{Bacterial mobility}

\section*{Bacteria}


\section*{Are you human?}


\section*{Are you human?}


\section*{Bacterial Motility}
- Bacteria need to move for various reasons
- To find food (energy)
- To escape toxins / poisons (including waste)

\section*{Flagella}
- Flagella are long whip-like protrusions \(\sim 20 \mathrm{~nm}\) in diameter
- The cell rotates them about their axis
- One of only two genuine rotary joints found in biology
- Rotation of flagella has two states
1. Run CCW rotation aligns all flagella and propels bacteria

http://info.fujita-hu.ac.jp/~tsutsumi/photo/photo002-6.htm Yutaka
Tsutsumi, M.D. Professor Department of Pathology Fujita Health
University School of Medicine in a straight line
2. Tumble - CW rotation separates flagella causing the bacteria to rotate "on the spot" randomly

\section*{Computational Biophysics}
- Today we will be using CP to look at the motion of a bacterial cell
- CP is also a key tool to study the behavior of smaller parts such as the flagella's operation
- Protein folding
- Fluid dynamics
- Physical Chemistry
- Brownian Dynamics

\section*{Run and Tumble}


\section*{Modeling the motion}
- Before you write any code
- Diagram
- Assumptions
- Quantities
- Constants
- Initial conditions
- State - how do we represent the state of the model at any one time?
- Formulate your problem before solving it
- Applies far wider than Computational Physics!

\section*{Diagram}


\section*{Assumptions}
- Assumptions:
- 2-dimensional space
- Many bacteria live on a surface
- Either running or tumbling
- Velocity (speed and angle constant during a run)
- Angle after a tumble is random
- Speed after a tumble is the same as before
- Probability of a tumble in some time interval, dt, is constant

\section*{Quantities}

Constants
- V

Run speed
- P_tumble Probability of tumbling in 1 sec

Initial conditions
- \(\mathbf{R}_{0}=\left(x_{0}, y_{0}\right) \quad\) Initial position
- \(\alpha_{0} \quad\) Initial angle

\section*{State}
\(\begin{array}{ll}\text { - } t_{n} & \text { Time at the } n^{\text {th }} \text { iteration(timestep) } \\ \text { - } & \mathbf{R}_{n}=\left(x_{n}, y_{n}\right) \\ \text { - } & a_{n}\end{array} \begin{aligned} & \text { Position at } n^{\text {th }}\end{aligned}\)

\section*{Simulation approach}

Decide on a timestep, dt
Quantize time
Initialize speed, time, angle, position
Repeat many times
If random() < p(tumbles in time dt)
Pick a new, random angle
Else
move speed*dt in direction angle

\section*{Simulation}
- Launch 100 particles from \((0,0)\) with initial, random angles
- Run event has a half life of 1 sec
- p_tumble(1 sec) \(=0.5\)
- Simulate for many timesteps over a 300 seconds

\section*{Simulation Results}


\section*{Simulation Results}

pyplot.subplot(221)
Multiple trajectories shown on one plot

\section*{Simulation Results}
pyplot.subplot(222)
Simplified trajectories showing only initial and final positions


\section*{Simulation Results}

\author{
pyplot.subplot(212)
}

MSD against time


\section*{Chemotaxis}

Hungry, Hungry bacteria

\section*{Hungry}
- We have a simple model of the process of bacterial motion
- Bacteria need to consume external sources of energy to live and reproduce
- A random walk isn't a very efficient method of finding that food!
-The bacteria could (somehow) have sensors at either end of the cell to determine gradient
-The cell is very small so the relative change in energy levels is very weak
-Poor signal to noise unreliable measurement
de
Position = v * time
-The bacteria moves very fast in 'scale speed' -


\section*{Chemotaxis}
- Bacteria are to simple to develop a coordinated approach to hunting food
- Instead they modulate the behavior of their random walk to make it more likely that they walk towards food
- Probability of tumbling relates to \(\mathrm{de} / \mathrm{dt}\) - rate of change of energy with time
- - Increasing energy: less likely to tumble
- - Decreasing energy: more likely to tumble

\section*{Weekly Assessment Hints}
- You need to keep track of historic energy levels to calculate the differential
- Use a Python list as a shift register
- See blackboard
- See live example

\section*{Chemotaxis in action}

\section*{No energy field}

** Field is different to the weekly assessment **

\section*{Field \(=200-\left(x^{2}+y^{2}\right)^{5}\)}

```

