Random Walks

Random Walks

- A random walk is a trajectory made by taking successive random steps
 - Random means direction of steps is uncorrelated
- These processes occur in many systems with:
 - History / memory (integration of change)
 - Randomness
- Biology, Physics, Mathematics, Finance

1D Random Walker

• As simple as it gets

• At fixed intervals we move either up or down by 1 unit with a 50/50 probability

• An individual example follows a random course

- However, we still have a "continuum behavior"
 - Just like radioactive decay

Examining bulk properties

- P(x,t) Probability of position x at time t
- <x> Average position
 - Mean Square Displacement

• $<(x-x_0)^2>$

Monte-Carlo

Analytical Solution

- Simulation many thousands of particles over many timesteps
- See how many there are at each (x,t) and normalize to a probability
- Similar to your work last week

Monte-Carlo

 Simulation many thousands of particles over many timesteps

 See how many there are at each (x,t) and normalize to a probability

Analytical Solution

• Pascal's triangle

P(x,t)

Diffusion

- A bulk statistical behavior emerges from the random motion
- Statistical Mechanics
- Diffusion
 - The spread of particles
 - From an area of high concentration
 - To areas of low concentration
 - Through random motion
- No directional force acts on the particles
- Disorder just increases because that is statistically more likely than disorder decreasing
- The arrow of time!

Mean Square Displacement

MSD is a very useful way of characterizing diffusing systems

 $\vec{r}_i(0)$ position of particle *i* at time 0 $\vec{r}_i(t)$ position of particle *i* at time *t*

$$msd(t) = \langle (r_i(t) - r_i(0))^2 \rangle$$

mean square displacement at time t

- The average of the square of the displacements many particles have moved
- A scalar quantity regardless of dimensionality

Aside – numpy.average

	\varTheta 🔿 🔿 average0.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a.	
	<pre>[fromfuture import division import matplotlib.pyplot as pyplot import numpy</pre>	
l	<pre># Example of using numpy to average trajectories</pre>	
	<pre># Let's make 3 trajectoris of 'x' at many timepoints timebase = numpy.arange(10) x0 = timebase x1 = 1.5 * timebase # this one is faster x2 = 1.2 * timebase</pre>	
	<pre># Let's plot them pyplot.figure() pyplot.plot(timebase, x0, label='x0') pyplot.plot(timebase, x1, label='x1') pyplot.plot(timebase, x2, label='x2') pyplot.xlabel('time') pyplot.legend() pyplot.savefig('average_0.png') pyplot.show()</pre>	
l	<pre># make a list of trajectories t_list = [x0, x1, x2]</pre>	
l	<pre># average them print numpy.average(t_list)</pre>	
l		
	Ln: 1 Col	: 0

\varTheta 🔿 🔿 average0.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a
<pre>fromfuture import division import matplotlib.pyplot as pyplot import numpy</pre>
<pre># Example of using numpy to average trajectories</pre>
<pre># Let's make 3 trajectoris of 'x' at many timepoints timebase = numpy.arange(10) x0 = timebase x1 = 1.5 * timebase # this one is faster x2 = 1.2 * timebase</pre>
<pre># Let's plot them pyplot.figure() pyplot.plot(timebase, x0, label='x0') pyplot.plot(timebase, x1, label='x1') pyplot.plot(timebase, x2, label='x2') pyplot.label('time') pyplot.legend() pyplot.savefig('average_0.png') pyplot.show()</pre>
<pre># make a list of trajectories t_list = [x0, x1, x2]</pre>
print numpy.average(t list)
Ln: 1 Col: 0

00	Python 2.7.5 Shell
[GCC 4.2.1 Com .68)] on darwi Type "copyrigh re information	nt", "credits" or "license()" for mo
>>> 5,55	RESTART
2	
	Ln: 7 Col: 4

Oh dear, it's averaged all the numbers at all timepoints

This is more like it – all values at a single timepoint are averaged

```
● O o average1.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a...
from __future__ import division
import matplotlib.pyplot as pyplot
import numpy
# Example of using numpy to average trajectories
# Let's make 3 trajectoris of 'x' at many timepoints
timebase = numpy.arange(10)
x0 = timebase
x1 = 1.5 * timebase # this one is faster
x2 = 1.2 * timebase
# Let's plot them
pyplot.figure()
pyplot.plot(timebase, x0, label='x0')
pyplot.plot(timebase, x1, label='x1')
pyplot.plot(timebase, x2, label='x2')
pyplot.xlabel('time')
pvplot.legend()
pyplot.savefig('average_0.png')
pyplot.show()
# make a list of trajectories
t_list = [x0, x1, x2]
# average them
print numpy.average(t_list_axis=0)
                                                         Ln: 27 Col: 28
```


This is more like it – all values at a single timepoint are averaged

- Numpy *reduction* methods can take an axis= option which specifics to specify which axis/axes to reduce the data over
- e.g., numpy.sum, .min, .max, .std, .average
- Default is to reduce over all axes

● ○ ○ average2.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a... from __future__ import division
import matplotlib.pyplot as pyplot import numpy # Example of using numpy to average trajectories # Let's make 3 trajectoris of 'x' at many timepoints timebase = numpy.arange(10) x0 = timebase x1 = 1.5 * timebase # this one is faster x2 = 1.2 * timebase# Let's plot them pyplot.figure() pyplot.plot(timebase, x0, label='x0', color='grey') pyplot.plot(timebase, x1, label='x1', color='grey')
pyplot.plot(timebase, x2, label='x2', color='grey')
uplot.plot(timebase, x2, label='x2', color='grey') pyplot.xlabel('time') # make a list of trajectories t_list = [x0, x1, x2] # average them avg = numpy.average(t_list, axis=0) pyplot.plot(timebase, avg, label='Average', color='red') pyplot.legend() pyplot.savefig('average_2.png') pyplot.show() Ln: 28 Col: 25

Mean Square Displacement

Random Walks in the Wild

Solar Radiation

Mean Free Path of a photon in the radiation zone is ~1cm

It takes an average of > 50,000 years for one photon to escape the radiation zone

Brownian Motion

• Discovered in 1827 boy Robert Brown

• Botanist studying pollen under a microscope

He noticed they appeared to move randomly without a cause

• Actually, collisions with molecules in the medium

Brownian Motion

- Albert Einstein published a paper in 1905 describing the statistical mechanics behind Brownian Motion
- One of his great *annus mirabilis papers*
- "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen"
- "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat"
- <u>http://users.physik.fu-berlin.de/~kleinert/files/</u> <u>eins_brownian.pdf</u>
 - (English translation)

Brownian Motion

- There is a simple mathematical relationship between:
 - Size of a particle
 - The density and temperature of the fluid it is in
 - The strength and timescales of Brownian motion it experiences
 - This allows Brownian motion to be used to determine the size of particles from ~1nm to ~100µm through *dynamic lights scattering, optical tweezing* and *microrheology*
 - http://www.youtube.com/watch?v=cDcprgWiQEY

Bacterial mobility Bacteria

(not to scale)

Are you human?

Are you human?

Bacterial Motility

- Bacteria need to move for various reasons
 - To find food (energy)
 - To escape toxins / poisons (including waste)

Flagella

- Flagella are long whip-like protrusions ~20nm in diameter
- The cell rotates them about their axis
 - One of only two genuine **rotary joints** found in biology
- Rotation of flagella has two states
 - **1. Run** CCW rotation aligns all flagella and propels bacteria in a straight line
 - 2. Tumble CW rotation separates flagella causing the bacteria to rotate "on the spot" randomly

http://info.fujita-hu.ac.jp/~tsutsumi/photo/photo002-6.htm Yutaka Tsutsumi, M.D. Professor Department of Pathology Fujita Health University School of Medicine

Computational Biophysics

• Today we will be using CP to look at the motion of a bacterial cell

- CP is also a key tool to study the behavior of smaller parts such as the flagella's operation
 - Protein folding
 - Fluid dynamics
 - Physical Chemistry
 - Brownian Dynamics

Modeling the motion

• Before you write any code

- Diagram
- Assumptions
- Quantities
 - Constants
 - Initial conditions
 - State how do we represent the state of the model at any one time?

- Formulate your problem before solving it
 - Applies far wider than Computational Physics!

Assumptions

- Assumptions:
 - 2-dimensional space
 - Many bacteria live on a surface
 - Either running or tumbling
 - Velocity (speed and angle constant during a run)
 - Angle after a tumble is random
 - Speed after a tumble is the same as before
 - Probability of a tumble in some time interval, dt, is constant

Quantities

Constants

- V Run speed
- P_tumble Probability of tumbling in 1 sec

Initial conditions

- $\mathbf{R}_{\mathbf{0}} = (\mathbf{x}_0, \mathbf{y}_0)$ Initial position
- α_0 Initial angle

State

• t_n • $R_n = (x_n, y_n)$ • α_n Time at the nth iteration(timestep) Position at nth Angle of travel at nth

Simulation approach

- Decide on a timestep, dt
- Quantize time
- Initialize speed, time, angle, position
- Repeat many times
 - If random() < p(tumbles in time dt)</pre>
 - Pick a new, random angle
 - Else

move speed*dt in direction angle

Simulation

- Launch 100 particles from (0,0) with initial, random angles
- Run event has a half life of 1 sec
 - p_tumble(1 sec) = 0.5
- Simulate for many timesteps over a 300 seconds

Simulation Results

Simulation Results

pyplot.subplot(221)

Multiple trajectories shown on one plot

Simulation Results

pyplot.subplot(222)

Simplified trajectories showing only initial and final positions

Simulation Results

pyplot.subplot(212)

MSD against time

Chemotaxis

Hungry, Hungry bacteria

Hungry

• We have a simple model of the process of bacterial motion

 Bacteria need to consume external sources of energy to live and reproduce

• A random walk isn't a very efficient method of finding that food!

Chemotaxis

 Bacteria are to simple to develop a coordinated approach to hunting food

 Instead they modulate the behavior of their random walk to make it more likely that they walk towards food

- Probability of tumbling relates to de/dt rate of change of energy with time
 - – Increasing energy: less likely to tumble
 - – Decreasing energy: more likely to tumble

Weekly Assessment Hints

- You need to keep track of historic energy levels to calculate the differential
- Use a Python list as a *shift register*
 - See blackboard
 - See live example

Chemotaxis in action

No energy field

** Field is different to the weekly assessment **

