Random Walks

Random Walks

* Arandom walk is a trajectory made by taking
successive random steps

e Random means direction of steps is uncorrelated

® These processes occur in many systems with:

® History / memory (integration of change)
® Randomness

* Biology, Physics, Mathematics, Finance

1D Random Walker

® As simple as it gets

® At fixed intervals we move either up or down by 1
unit with a 50/50 probability

Position

15

10

1D — example

Time

30

Position

15

10

1D — example

Time

30

Position

15

10

1D — example

Time

30

Position

15

10

1D — example

5 10

Time

30

Position

15

10

1D — example

5 10

Time

30

Position

15

10

1D — example

10

Time

30

Position

15

10

1D — example

o
o .
0] o
o (5]
a 0] o
o (5]
Q
a 0] o
o (5]
Q o
(o] .
(o]
5 10 15 20 25

Time

30

Position

15

10

1D — example

15
Time

20

30

Position

15

10

1D — example

10

15
Time

20

30

Position

15

1D — example

5 10 15 20 25
Time

30

Position

15

1D — example

5 10 15 20 25
Time

30

Position

15

1D — example

Time

30

Position

15

1D — example

Time

30

1D — example

15

uonIsod

20 25 30

15
Time

Position

1D — example

Bulk Behavior

® An individual example follows a random course

® However, we still have a “continuum behavior”
® Just like radioactive decay

Position

30

20

10

Bulk Behavior

Time

30

Position

30

20

10

-10

Bulk Behavior

Time

30

Position

30

20

10

-10

Bulk Behavior

Time

30

Position

30

20

10

-10

Bulk Behavior

Time

30

Position

30

20

10

Bulk Behavior

Time

30

Position

30

20

10

Bulk Behavior

Time

30

Position

30

20

Bulk Behavior

Time

30

Position

30

20

Bulk Behavior

Time

30

Bulk Behavior

30

20+

10+

uonIsod

o
—
|

25

15
Time

10

30

Bulk Behavior

30

20+

uonIsod

o
—
|

15 20 25

Time

10

30

Examining bulk properties
* P(x,t) Probability of position x at time t

o <x> Average position

® <(X-Xp)?> Mean Square Displacement

P(x,t)

Monte-Carlo Analytical Solution

e Simulation many thousands
of particles over many
timesteps

® See how many there are at
each (x,t) and normalize to a
probability

® Similar to your work last
week

P(x,t)

Monte-Carlo Analytical Solution

® Simulation many e Pascal’s triangle
thousands of particles over
many timesteps

® See how many there are at
each (x,t) and normalize to
a probability

P(pos)

0.25 : . , ,
—— Time=0
—— Time=10
020l —— Time=20
— Time=40
—— Time=80
— Time=160
0.15F — Time=320
— Time=640
— Time=1280
0.10 Time=2560 |1
0.05
/
0.00 ﬂ . &\

=30 -20 -10 0 10 20

Diffusion

A bulk statistical behavior emerges from the random motion
Statistical Mechanics

Diffusion

® The spread of particles

® From an area of high concentration
® To areas of low concentration

® Through random motion

No directional force acts on the particles

Disorder just increases because that is statistically more likely than
disorder decreasing

The arrow of time!

Mean Square Displacement

e MSD is a very useful way of characterizing diffusing
systems

r.(0) position of particle i at time 0
r(t) position of particle i at time ¢

msd () = ((r(£)-7(0)f) mean square displacement at time ¢

® The average of the square of the displacements many
particles have moved

® A scalar quantity regardless of dimensionality

Aside — numpy.average

__future__ import division
import matplotlib.pyplot as pyplot
import numpy

Example of using numpy to average trajectories

Let's make 3 trajectoris of 'x' at many timepoints
timebase = numpy.arange(10)

x@ = timebase

x1 = 1.5 * timebase # this one is faster

x2 = 1.2 * timebase

Let's plot them

pyplot.figure()

pyplot.plot(timebase, x@, label='x0")
pyplot.plot(timebase, x1, label='x1")
pyplot.plot(timebase, x2, label='x2")
pyplot.xlabel(' time')

pyplot. legend()
pyplot.savefig('average_0.png")
pyplot.show()

make a list of trajectories
t_list = [x@, x1, x2]

average them
print numpy.average(t_list)

14

12

10

X0
x1
X2

Aside — numpy.average

import division
import matplotlib.pyplot as pyplot
import numpy

Example of using numpy to average trajectories

Let's make 3 trajectoris of 'x' at many timepoints
timebase = numpy.arange(10)

x@ = timebase

x1 = 1.5 * timebase # this one is faster

x2 = 1.2 * timebase

Let's plot them

pyplot.figure()

pyplot.plot(timebase, x@, label='x0")
pyplot.plot(timebase, x1, label='x1")
pyplot.plot(timebase, x2, label='x2")
pyplot.xlabel(' time')

pyplot. legend()
pyplot.savefig('average_0.png")
pyplot.show()

make a list of trajectories
t_list = [x@, x1, x2]
- - oy
dVerage them =~
print numpy.average(t_list)

‘———’

[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0
.68)] on darwin
Type "copyright", "credits" or "license()" for mo
re information.

RESTART ====

Oh dear, it’s averaged all the
numbers at all timepoints

Aside — numpy.average

from __future__ import division
import matplotlib.pyplot as pyplot
import numpy

Example of using numpy to average trajectories

Let's make 3 trajectoris of 'x' at many timepoints
timebase = numpy.arange(10)

x@ = timebase

x1 = 1.5 * timebase # this one is faster

x2 = 1.2 * timebase

Let's plot them

pyplot.figure()

pyplot.plot(timebase, x@, label='x0")
pyplot.plot(timebase, x1, label='x1"')
pyplot.plot(timebase, x2, label='x2")
pyplot.xlabel(' time')

pyplot. legend()
pyplot.savefig('average_0.png")
pyplot.show()

make a list of trajectories
t_list = [x@, x1, x2]

—\
print numpy.average(t_list] jxis=0)

-

average them

e O Python 2. nell

Python 2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>> RESTART

S2am = —
[} 1.23333333 2.46666667 3.7 4.93333333 "

5: 16666667 7.4 8.63333333 9.86666667 11.1] -
—
e o o e e == == =

This is more like it — all values at a
single timepoint are averaged

Aside — numpy.average

_© O O averagel.py - /Users/cds/cds/Teaching/CompPhys/Week 7/a...

from __future__ import division
import matplotlib.pyplot 25 pyplot
import numpy

Example of using numpy to average trajectories

Let's make 3 trajectoris of 'x' at many timepoints
timebase = numpy.arange(10)

x@ = timebase .8 0 0 . Python 2.7.5 Shell
x1 = 1.5 * timebase # this one is faster

Python 2.7.5 (default, Aug 25 2013, 00:04:04)

X2 = 1.2 * timebase [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "copyright", "credits" or "license()" for more information.
Let's plot them >>> RESTART
pyplot.figure() = o EEm EE S S o
: iyt > — _—
pyplot.plot(timebase, x, label='x0') . 1.23333333 2.46666667 3.7 4.93333333
g;g{g:-g{g:gm:gg:z. :;, {:g:{—};'; 6.16666667 7.4 8.63333333 9.86666667 11.1 -
. ’ ’ =X —-_—
pyplot.xlabel('time") T e

pyplot. legend()
pyplot.savefig('average_0.png')
pyplot.show()

make a list of trajectories
t_list = [x@, x1, x2]

—
average them ~
print numpy.average(t_list] jxis=0)

-

This is more like it — all values at a
single timepoint are averaged

* Numpy reduction methods can take an axis= option which specifics to specify which
axis/axes to reduce the data over

* e.g., humpy.sum, .min, .max, .std, .average

» Default is to reduce over all axes

Aside — numpy.average

__future__ import division
import matplotlib.pyplot as pyplot
import numpy

Example of using numpy to average trajectories

Let's make 3 trajectoris of 'x' at many timepoints 14 T T T T T T T T

timebase = numpy.arange(10) %0

x@ = timebase

x1 = 1.5 * timebase # this one is faster — x1
. 12

x2 = 1.2 * timebase — X2

1
Let's plot them — Average

pyplot.figure() 10
pyplot.plot(timebase, x@, label='x@', color='grey')
pyplot.plot(timebase, x1, label='x1', color='grey')
pyplot.plot(timebase, x2, label='x2', color='grey') 8
pyplot.xlabel('time"')

make a list of trajectories
t_list = [x@, x1, x2] 6

average them

avg = numpy.average(t_list, axis=@) al

pyplot.plot(timebase, avg, label='Average', color='red')

pyplot. legend()

pyplot.savefig('average_2|.png') 2t

pyplot.show()
0 L L L L L L L L
0 1 2 3 4 5 6 7 8

Mean Square Displacement

800 1 1 T T 1 1
100 samples
700 — 10000 samples |

600 .

500 .

3 400
g

300 .

200 .

100 .

0 100 200 300 400 500 600 700
Iteration (time)

Random Walks in the
Wild

Solar Radiation

convection zone

radiation zone

Core
Fusion region

many photons
emitted & absorbed

bulk transport of material
in convective cells

Mean Free Path of a
photon in the
radiation zone is
~1cm

It takes an average of

> 50,000 years for one
photon to escape the

radiation zone

47

Brownian Motion
Discovered in 1827 boy Robert Brown

Botanist studying pollen under a microscope

He noticed they appeared to move randomly
without a cause

Actually, collisions with molecules in the medium

Brownian Motion

Albert Einstein published a paper in 1905 describing the
statistical mechanics behind Brownian Motion

One of his great annus mirabilis papers

“Uber die von der molekularkinetischen Theorie der Warme
geforderte Bewegung von in ruhenden Fllssigkeiten
suspendierten Teilchen”

“On the movement of small Barticles suspended in a
ﬁtatgonary liquid demanded by the molecular-kinetic theory of
ea 7

http://users.physik.fu-berlin.de/~kleinert/files/
eins brownian.pdf

® (English translation)

Brownian Motion

® There is a simple mathematical relationship between:

Size of a particle
The density and temperature of the fluid it is in

The strength and timescales of Brownian motion it
experiences

This allows Brownian motion to be used to determine the
size of particles from ~1nm to ~100um through dynamic
lights scattering, optical tweezing and microrheology

http://www.youtube.com/watch?v=cDcpreWiOEY

Bacterial mobility
Bacteria

© Virus
Q Prokaryotes Single-celled living
. . . organism, no separate
(including Bacteria) nucleus

Single cell with a
Eukaryotes separate nucleus —
forms the basis of multi-
cellular life

(not to scale)

Are you human?

© Virus

Prokaryotes
Q (including Bacteria)

Eukaryotes =
~1013 Eukaryotes

(not to scale)

Are you human?

© Virus
Prokaryotes ~1014 Bacteria!
Q (including Bacteria)

Eukaryotes =
~1013 Eukaryotes

(not to scale)

Bacterial Motility

e Bacteria need to move for various reasons
e Jo find food (energy)
® Jo escape toxins / poisons (including waste)

Flagella

* Flagella are long whip-like
protrusions ~20nm in
diameter

e The cell rotates them about
their axis

® One of only two genuine
rotary joints found in biology

® Rotation of flagella has two
states

1. Run - CCW rotatlon a||gns a” httgr://tinfo.fujih‘;laguP.ac%Jp/~tsgtsun’]t\/ph?tof/p')jh(t);o(‘)OZih_t_;n YHUtalﬁ
: sutsumi, M.D. Professor Department of Pathology Fujita Hea
flagella and propels bacteria o niversity School of Medicine

in a straight line

2. Tumble — CW rotation
separates flagella causing
the bacteria to rotate “on the

spot” randomly

Computational Biophysics

® Today we will be using CP to look at the motion of
a bacterial cell

® CP is also a key tool to study the behavior of
smaller parts such as the flagella’s operation

® Protein folding
® Fluid dynamics
® Physical Chemistry
® Brownian Dynamics

Run and Tumble

y,

Run and Tumble

/

Run and Tumble

N

Run and Tumble

Run and Tumble

Run and Tumble

Run and Tumble

Run and Tumble

Run and Tumble

Run and Tumble

Run and Tumble

PN A

%,
=

N

!

Run and Tumble

PN A

%,
=

s &F

N

!

Modeling the motion

e Before you write any code
® Diagram
® Assumptions
® (Quantities
® Constants
® |nitial conditions

® State — how do we represent the state of the model at any
one time?

® Formulate your problem before solving it
e Applies far wider than Computational Physics!

Diagram

Assumptions

® Assumptions:
e ?.dimensional space
®* Many bacteria live on a surface
® Either running or tumbling
® Velocity (speed and angle constant during a run)
® Angle after a tumble is random
® Speed after a tumble is the same as before

® Probability of a tumble in some time interval, dt, is
constant

Quantities

Constants
o V Run speed
e P_tumble Probability of tumblingin 1 sec

Initial conditions

* Ry, =(Xp Yo) Initial position
®* 0, Initial angle
State
° t Time at the nt" iteration(timestep)
° R,=(X,Y,) Position at nt"

* o, Angle of travel at nth

Simulation approach

Decide on a timestep, dt
Quantize time
Initialize speed, time, angle, position

Repeat many times

If random() < p(tumbles in time dt)
Pick a new, random angle

Else
move speed*dt in direction angle

Simulation

Launch 100 particles from (0,0) with initial,
random angles

Run event has a half life of 1 sec
e p tumble(l sec) = 0.5

Simulate for many timesteps over a 300 seconds

MSD(um?)

Simulation Results

240 =30 —20 -10 0 10 20 30 40

1200 T T T T T

1000 |- 4

400 | 1

% 50 100 150 200 250 300
Time (s)

4240 —30 —20 -10 0 10 20 30 40

Simulation Resulis

%: pyplot.subplot (221)

.3 Multiple trajectories shown
on one plot

&

Simulation Results

pyplot.subplot (222)

Simplified trajectories
showing only initial and
final positions

Simulation Results

pyplot.subplot (212)

MSD against time

Time (s)

Chemotaxis

Hungry, Hungry bacteria

Hungry

® We have a simple model of the process of bacterial
motion

® Bacteria need to consume external sources of
energy to live and reproduce

® Arandom walk isn’t a very efficient method of
finding that food!

de ¢

Energy

*The bacteria could (somehow) have sensors at
either end of the cell to determine gradient

*The cell is very small so the relative change in
energy levels is very weak

*Poor signal to noise unreliable measurement

v

Position = v * time

de

Energy

*The bacteria moves very fast in ‘scale speed’ —
approx 60 cell lengths a second (faster than a
Cheetah, 25 lengths/sec!)

*If the cell samples and records instantaneous
energy density over a period of time it can compare
historic and current values

*Much larger change observed — better signal/noise

Position = v * time

Chemotaxis

® Bacteria are to simple to develop a coordinated
approach to hunting food

® [nstead they modulate the behavior of their random
walk to make it more likely that they walk towards food

® Probability of tumbling relates to de/dt — rate of change
of energy with time

® — [ncreasing energy: less likely to tumble
® — Decreasing energy: more likely to tumble

Weekly Assessment Hints

® You need to keep track of historic energy levels to
calculate the differential

® Use a Python list as a shift register

® See blackboard
® See live example

Chemotaxis in action

MSD(um?)

No energy field

240 —30 —20 -10 0 10 20 30 40

1200 T T T T T

1000 |-

800 |-

400

200

% 50 100 150 200 250
Time (s)

MSD(um?)

** Field is different to the weekly assessment **

Field = 200-(x2+y?)5

Releasing bacteria here

T 0 10 20 30 20

3500 T T
3000 \
2500] MSD measured from
2000 | here (energy peak)

-
wn
o
o

1000 |

500 |

0 50 100 150 200 250 300
Time (s)

