L2 Computational Physics

Optimisation Techniques

Function minimisation

Optimisation Techniques

- Background
- Aside visualising 2D data as images
- Brute force methods
- Deterministic Methods
 - Gradient Descent
 - Nelder-Mead Simplex
- Stochastic Methods
 - Genetic Algorithms

Background

Function minimisation

- Given f(x,y,....) find the coordinates and value at the minima of the function
- Analytical techniques only useful for some functions
- Numerical techniques
 - This is what we will look at today

Applications of minimisation

- Science
 - Fitting a model function to experimental data
 - Orbital mechanics
 - Optical design
 - Maximise image quality
 - Minimise cost
 - Adaptive Optics
 - Protein folding
 - Optimising control system parameters
- An example in your pocket:
 - Auto-focus cameras (smart phone)

Aside

Visualising 2D functions

• It's going to be really useful to be able to visualise these functions

• Let's look at how we do that with Python, numpy and matplotlib

• We want to visualise f(x, y)

 Evaluate f(x, y) over a range of evenly spaced x and y values

• Store the results in a 2D numpy array

• Display this with matplotlib

```
from __future__ import division
import numpy
import matplotlib.pyplot as pyplot
import matplotlib.colors as colors
import matplotlib.cm
```

```
def f(x, y):
    a=numpy.cos(0.2*x**2-0.3*y**2+3)
    b=numpy.sin(2*y-1+numpy.e**x)
    return a*b
```

Define bounds x0, x1 = -2.5, 2 y0, y1 = -2, 2

#explore 1000 points in x and y
N_POINTS=1000
dx=(x1-x0)/N_POINTS
dy=(y1-y0)/N_POINTS

#generate x and y values
xs=numpy.arange(x0,x1,dx)
ys=numpy.arange(y0,y1,dy)

```
#array to hold function values
dat=numpy.zeros((len(xs), len(ys)))
```

```
for ix, x in enumerate(xs):
    for iy, y in enumerate(ys):
        dat[ix,iy]=f(x,y)
```

```
pyplot.figure()
```

```
# Show a greyscale colourmap of the data
im = pyplot.imshow(dat,
        extent=(x0, x1,y0, y1),
        origin='lower',
        cmap=matplotlib.cm.gray)
pyplot.xlabel('x')
pyplot.ylabel('y')
```

```
pyplot.colorbar(im, orientation='vertical',
label='$f(x,y)$')
```

```
pyplot.show()
```


Methods

- Brute Force and Ignorance
 Exhaustive Search
- Deterministic searches
 - Nelder-Mead Simplex
 - Gradient Descent
 - Hill Climbing
- Stochastic Searches
 - Genetic Algorithm
 - Stochastic Gradient Descent
 - Simulated Annealing

Brute Force and Ignorance

Fast to code Slow to run

Exhaustive Search

- For every x
 - For every y
 - Is this the smallest f(x, y)?
- Benefits
 - Trivial to code
- Drawbacks
 - Slow
 - Not very accurate it must operate on some finite, quantised grid

Deterministic Methods

Deterministic Methods

• These methods all start from some initial position

• If you run the same method from the same position multiple times, you get the same result

Gradient Descent

Gradient Descent: Algorithm

•Walk downhill

Gradient Descent: Algorithm

Maths notation	Quantity	Python
\vec{r}	Position vector	r = numpy.array(x, y)
$f(\vec{r})$	Function at \vec{r}	<pre>def f((x, y)): return ???</pre>
$\nabla f(\vec{r})$	Vector differential of $f(\vec{r})$	<pre>def f((x, y)): df_dx = ??? df_dy = ??? grad = numpy.array((df_dx, dy_dy) return grad</pre>
\vec{r}_0	Initial position	r0 = numpy.array((x0, y0))
γ	Step size	gamma = 0.something

$$\vec{r}_{n+1} = \vec{r}_n - \gamma \nabla f(\vec{r}_n)$$

Coloured lines are contours - see <u>http://matplotlib.org/examples/pylab_examples/contour_demo.html</u>

Step Size

- Gradient Descent is highly sensitive to the step size, gamma
- Too small a step and convergence is very slow
- Too large a step and it may overshoot and the method becomes unstable

• Audience Question: What causes this to happen?

Step Size

- Gradient Descent is highly sensitive to the step size, gamma
- Too small a step and convergence is very slow
- Too large a step and it may overshoot and the method becomes unstable

 Curvature and higher order terms mean the gradient is only locally constant – adaptive step size can choose a gamma based on curvature measurements etc.

Y to small – slow convergence

Y larger – faster convergence

Y about right

Y to big – oscillatory convergence

Y – perfectly wrong

Y far to big - divergence

GD Example 2

• Rosenbrock's Banana Function

 $f(x, y) = (1 - x)^{2} + 100(y - x^{2})^{2}$

• A tough test case for minima finding

- Steep cliffs
- Very shallow valley

1e-001

GD – when to stop?

- It's common to have a maximum number of iterations
- Another common pattern is to terminate early upon reaching some *convergence criteria*

```
    C O cp6.concvergence.py - /Users/cds/cp6.concvergence.py

    r = initital_position
    for i in range(max_iter)
        fLast = f(r)
        r = r + ... # gradient descent step
        fNew = f(r)
        if abs(fNew - fLast) < CONVERGENCE_CRITERA:
            break # we are done, exit for loop early
print 'Found minimum in %i iterations ' % i
        Ln: 9 Col: 0
</pre>
```

Hill Climbing

Hill Climbing

- Hill climbing is similar to gradient descent but simpler
- Hill climbing tries moving a small distance in one dimension only at a time
- When this no longer works, another dimension is explored
- Very simple to code

Local Minima

GD & Local Minima

Pathological example

No gradient into the minima

Stochastic Methods

Often, a little bit of randomness goes a long way

Genetic Algorithms

Genetic Algorithms

• Random solutions

Survival of the fittest
Sexual Reproduction
Mutation

GA & Local Minima

• The wide sampling of the initial 'scattergun' approach of the GA means that some points should fall near the global maxima

• Due to 'survival of the fittest' these rapidly form the basis of the population

GA & Local Minima

Weekly Assessment

- You are going to implement a 2D Gradient Descent and plot the results
- A gradient descent solver starts from a vector point
 - Just like your Euler solver for the spring
- The solver makes a series of steps that update the vector position with some function of the vector
 - Just like your Euler solver for the spring