L2 Computational Physics

Optimisation Techniques

Function minimisation

Optimisation Techniques

- Background
- Aside - visualising 2D data as images
- Brute force methods
- Deterministic Methods
- Gradient Descent
- Nelder-Mead Simplex
- Stochastic Methods
- Genetic Algorithms

Background

Function minimisation

- Given $f(x, y, \ldots$.$) find the coordinates and value at the$ minima of the function
- Analytical techniques - only useful for some functions
- Numerical techniques
- This is what we will look at today

Applications of minimisation

- Science
- Fitting a model function to experimental data
- Orbital mechanics
- Optical design
- Maximise image quality
- Minimise cost
- Adaptive Optics
- Protein folding
- Optimising control system parameters
- An example in your pocket:
- Auto-focus cameras (smart phone)

Aside

Visualising 2D functions

- It's going to be really useful to be able to visualise these functions
- Let's look at how we do that with Python, numpy and matplotlib

2D plotting

- We want to visualise $f(x, y)$
- Evaluate $f(x, y)$ over a range of evenly spaced x and y values
- Store the results in a 2D numpy array
- Display this with matplotlib

2D plotting

from __future__ import division import numpy import matplotlib.pyplot as pyplot import matplotlib.colors as colors import matplotlib.cm
$\operatorname{def} f(x, y)$:
$a=n u m p y . \cos \left(0.2^{*} x^{* *} 2-0.3^{*} y^{* *} 2+3\right)$
b=numpy.sin(2*y-1+numpy.e**x) return a*b

2D plotting

\# Define bounds
$\mathrm{x0}, \mathrm{x} 1=-2.5,2$
$\mathrm{y} 0, \mathrm{y} 1=-2,2$
\#explore 1000 points in \mathbf{x} and y
N_POINTS=1000
dx=(x1-x0)/N_POINTS
$d y=(y 1-y 0) /$ N_POINTS
\#generate x and y values
xs=numpy.arange $(x 0, x 1, d x)$
ys=numpy.arange($\mathrm{y} 0, \mathrm{y} 1, \mathrm{dy}$)
\#array to hold function values
dat=numpy.zeros((len(xs), len(ys)))

2D plotting

for ix, x in enumerate(xs): for $i \mathrm{y}, \mathrm{y}$ in enumerate(ys): $\operatorname{dat}[i x, i y]=f(x, y)$
pyplot.figure()
\# Show a greyscale colourmap of the data im = pyplot.imshow(dat, extent $=(\mathrm{x} 0, \mathrm{x} 1, \mathrm{y} 0, \mathrm{y} 1)$, origin='lower', cmap=matplotlib.cm.gray)
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.colorbar(im, orientation='vertical', label='\$f(x,y)\$')
pyplot.show()

Methods

- Brute Force and Ignorance - Exhaustive Search
- Deterministic searches
- Nelder-Mead Simplex
- Gradient Descent
- Hill Climbing
- Stochastic Searches
- Genetic Algorithm
- Stochastic Gradient Descent
- Simulated Annealing

Brute Force and Ignorance

Fast to code
Slow to run

Exhaustive Search

- For every x
- For every y
- Is this the smallest $f(x, y)$?
- Benefits
- Trivial to code
- Drawbacks
- Slow
- Not very accurate - it must operate on some finite, quantised grid

Deterministic Methods

Deterministic Methods

- These methods all start from some initial position
- If you run the same method from the same position multiple times, you get the same result

Gradient Descent

Gradient Descent: Algorithm

- Walk downhill

Gradient Descent: Algorithm

Maths notation	Quantity	Python
\vec{r}	Position vector	r = numpy.array (x, y)
$f(\vec{r})$	Function at \vec{r}	$\begin{aligned} & \text { def } f((x, y)): \\ & \\ & \text { return ?? } \end{aligned}$
$\nabla f(\vec{r})$	Vector differential of $f(\vec{r})$	```def f((x, y)): df dx = ??? df_dy = ??? grād = numpy.array((df_dx, dy_dy) return grad```
\vec{r}_{0}	Initial position	r0 = numpy.array ($\left.\mathrm{x}^{0} 0, \mathrm{y} 0\right)$)
γ	Step size	gamma $=0$. something

$$
\vec{r}_{n+1}=\vec{r}_{n}-\gamma \nabla f\left(\vec{r}_{n}\right)
$$

Coloured lines are contours - see http://matplotlib.org/examples/pylab examples/contour demo.html

Step Size

- Gradient Descent is highly sensitive to the step size, gamma
- Too small a step and convergence is very slow
- Too large a step and it may overshoot and the method becomes unstable
- Audience Question: What causes this to happen?

Step Size

- Gradient Descent is highly sensitive to the step size, gamma
- Too small a step and convergence is very slow
- Too large a step and it may overshoot and the method becomes unstable
- Curvature and higher order terms mean the gradient is only locally constant - adaptive step size can choose a gamma based on curvature measurements etc.

Y to small - slow convergence

γ larger - faster convergence

γ about right

γ to big - oscillatory convergence

Y-perfectly wrong

Y far to big - divergence

GD Example 2

- Rosenbrock's Banana Function

$$
f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}
$$

- A tough test case for minima finding

Steep cliffs
Very shallow valley

GD Example 2

GD Example 2

Trajectories rapidly enter the valley to the minima at $(1,1)$

Most trajectories run out before then as we have not run for enough itterations

GD in the valley - slow

GD - when to stop?

- It's common to have a maximum number of iterations
- Another common pattern is to terminate early upon reaching some convergence criteria

```
\bigcirc \bigcirc \mp@code { c p 6 . c o n c v e r g e n c e . p y ~ - ~ / U s e r s / c d s / c p 6 . c o n c v e r g e n c e . p y }
r = initital_position
for i in range(max_iter)
    fLast = f(r)
    r = r + ... # gradient descent step
    fNew = f(r)
    if abs(fNew - fLast) < CONVERGENCE_CRITERA:
        break # we are done, exit for loop early
print 'Found minimum in %i iterations ' % i
```


Hill Climbing

Hill Climbing

- Hill climbing is similar to gradient descent but simpler
- Hill climbing tries moving a small distance in one dimension only at a time
- When this no longer works, another dimension is explored
- Very simple to code

Local Minima

GD \& Local Minima

Pathological example

No gradient into the minima

Stochastic Methods

Often, a little bit of randomness goes a long way

Genetic Algorithms

Genetic Algorithms

- Random solutions
- Survival of the fittest
- Sexual Reproduction
- Mutation

$$
\begin{aligned}
& \infty \\
& 000
\end{aligned}
$$

$$
\begin{aligned}
& 10 \% \\
& \begin{array}{ccccccc}
0 & 08 & 0 & 0 & 808 & 0 & 0 \\
0 & 0 & 0 & 88 & 0 & 0 & 0 \\
0 & 0 & 8 & 8 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 0^{\circ} 8^{\circ}
\end{aligned}
$$

GA \& Local Minima

- The wide sampling of the initial 'scattergun' approach of the GA means that some points should fall near the global maxima
- Due to 'survival of the fittest' these rapidly form the basis of the population

GA \& Local Minima

Weekly Assessment

- You are going to implement a 2D Gradient Descent and plot the results
- A gradient descent solver starts from a vector point
- Just like your Euler solver for the spring
- The solver makes a series of steps that update the vector position with some function of the vector
- Just like your Euler solver for the spring

