
L2 Computational Physics 
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Optimisation 
Techniques 

Function minimisation 
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Optimisation Techniques 
�  Background 

�  Aside – visualising 2D data as images 

�  Brute force methods 

�  Deterministic Methods 

�  Gradient Descent 

�  Nelder-Mead Simplex 

�  Stochastic Methods 

�  Genetic Algorithms 
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Background 
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Function minimisation 
�  Given f(x,y,….) find the coordinates and value at the 

minima of  the function 

�  Analytical techniques – only useful for some 
functions 

�  Numerical techniques 
�  This is what we will look at today 
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Applications of  
minimisation 

�  Science 
�  Fitting a model function to experimental data 
�  Orbital mechanics 
�  Optical design 

�  Maximise image quality 
�  Minimise cost 

�  Adaptive Optics 
�  Protein folding 
�  Optimising control system parameters 

�  An example in your pocket: 
�  Auto-focus cameras (smart phone) 
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Aside  
 

 Visualising 2D functions 
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•  It’s going to be really useful to be able to visualise 
these functions 

•  Let’s look at how we do that with Python, numpy 
and matplotlib 
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2D plotting 
•  We want to visualise f(x, y) 

•  Evaluate f(x, y) over a range of  evenly spaced x and 
y values 

•  Store the results in a 2D numpy array 

•  Display this with matplotlib 
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2D plotting 
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from __future__ import division 
import numpy 
import matplotlib.pyplot as pyplot 
import matplotlib.colors as colors 
import matplotlib.cm 
 
def f(x, y): 
    a=numpy.cos(0.2*x**2-0.3*y**2+3) 
    b=numpy.sin(2*y-1+numpy.e**x) 
    return a*b 
 



2D plotting 
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# Define bounds 
x0, x1 = -2.5, 2 
y0, y1 =  -2, 2 
 
#explore 1000 points in x and y 
N_POINTS=1000 
dx=(x1-x0)/N_POINTS 
dy=(y1-y0)/N_POINTS 
 
#generate x and y values 
xs=numpy.arange(x0,x1,dx) 
ys=numpy.arange(y0,y1,dy) 
 
#array to hold function values 
dat=numpy.zeros((len(xs), len(ys))) 
 



2D plotting 
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for ix, x in enumerate(xs): 
    for iy, y in enumerate(ys): 
        dat[ix,iy]=f(x,y) 
 
pyplot.figure() 
     
# Show a greyscale colourmap of the data 
im = pyplot.imshow(dat, 
        extent=(x0, x1,y0, y1), 
        origin='lower', 
        cmap=matplotlib.cm.gray) 
pyplot.xlabel('x') !
pyplot.ylabel('y') !
 
pyplot.colorbar(im, orientation='vertical', 
label='$f(x,y)$') 
     
pyplot.show() 
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Methods 
•  Brute Force and Ignorance 

–   Exhaustive Search 

 

•  Deterministic searches 
–  Nelder-Mead Simplex 
–  Gradient Descent 
–  Hill Climbing 

•  Stochastic Searches 
–  Genetic Algorithm 
–  Stochastic Gradient Descent 
–  Simulated Annealing 
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Brute Force and 
Ignorance 

Fast to code 
Slow to run 
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Exhaustive Search 
�  For every x 

�  For every y 

�  Is this the smallest f(x, y)? 

�  Benefits 

�   Trivial to code 

�  Drawbacks 

�  Slow 

�  Not very accurate – it must operate on some finite, 
quantised grid 
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Deterministic Methods 
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Deterministic Methods 
•  These methods all start from some initial position 

•  If  you run the same method from the same position 
multiple times, you get the same result 
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Gradient Descent 
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Gradient Descent: Algorithm 

� Walk downhill 
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Gradient Descent: Algorithm 
 
Maths notation Quantity Python 
r!  Position vector r = numpy.array(x, y) 
( )rf !  Function at r!  def f((x, y)): 

    return ??? 
( )rf !∇  Vector differential of ( )rf !  def f((x, y)): 

    df_dx = ??? 
    df_dy = ??? 
    grad = numpy.array((df_dx, dy_dy) 
    return grad 

0r
!  Initial position r0 = numpy.array((x0, y0)) 

γ  Step size gamma = 0.something 
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( )nnn rfrr !!!
∇−=+ γ1
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Coloured lines are contours  - see http://matplotlib.org/examples/pylab_examples/contour_demo.html 
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Step Size 
•  Gradient Descent is highly sensitive to the step size, 

gamma 

•  Too small a step and convergence is very slow 

•  Too large a step and it may overshoot and the 
method becomes unstable 

•  Audience Question: What causes this to happen? 
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Step Size 
•  Gradient Descent is highly sensitive to the step size, 

gamma 

•  Too small a step and convergence is very slow 

•  Too large a step and it may overshoot and the 
method becomes unstable 

•  Curvature and higher order terms mean the gradient 
is only locally constant – adaptive step size can 
choose a gamma based on curvature measurements 
etc. 
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γ to small – slow convergence 
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γ larger – faster convergence 
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γ about right 
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γ to big – oscillatory 
convergence 
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γ – perfectly wrong 
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γ far to big - divergence 
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GD Example 2 
•  Rosenbrock’s Banana Function 

•  A tough test case for minima finding 

•    Steep cliffs 

•    Very shallow valley 
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f (x, y) = (1− x)2 +100(y− x2 )2
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GD Example 2 
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GD Example 2 

Trajectories rapidly enter the valley 
then crawl along the shallow gradient 
to the minima at (1,1) 

 

Most trajectories run out before then 
as we have not run for enough 
itterations 
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The method can ‘zig-zag’ in an 
unstable manner if the step size is to 
large, constantly overshooting the 
lowest local value 
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GD in the valley - slow 



43 

GD in the valley - slow 
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GD in the valley - slow 
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GD in the valley - slow 



GD – when to stop? 
�  It’s common to have a maximum number of  

iterations 

�  Another common pattern is to terminate early upon 
reaching some convergence criteria 
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Hill Climbing 
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Hill Climbing 
�  Hill climbing is similar to gradient descent but 

simpler 

�  Hill climbing tries moving a small distance in one 
dimension only at a time 

�  When this no longer works, another dimension is 
explored 

�  Very simple to code  
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Local Minima 
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GD & Local Minima 



Pathological example 
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No gradient into the minima 
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Stochastic Methods 
Often, a little bit of  randomness goes a long way 
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Genetic Algorithms 
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Genetic Algorithms 
•  Random solutions 

•  Survival of  the fittest 

•  Sexual Reproduction 

•  Mutation 
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GA & Local Minima 
•  The wide sampling of  the initial ‘scattergun’ 

approach of  the GA means that some points should 
fall near the global maxima 

•  Due to ‘survival of  the fittest’ these rapidly form 
the basis of  the population 
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GA & Local Minima 
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Weekly Assessment  
�  You are going to implement a 2D Gradient Descent 

and plot the results 

�  A gradient descent solver starts from a vector point 
�  Just like your Euler solver for the spring 

�  The solver makes a series of  steps that update the 
vector position with some function of  the vector 

�  Just like your Euler solver for the spring 
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