
L2 Computational Physics

1

Optimisation
Techniques

Function minimisation

2

Optimisation Techniques
�  Background

�  Aside – visualising 2D data as images

�  Brute force methods

�  Deterministic Methods

�  Gradient Descent

�  Nelder-Mead Simplex

�  Stochastic Methods

�  Genetic Algorithms

3

Background

4

Function minimisation
�  Given f(x,y,….) find the coordinates and value at the

minima of the function

�  Analytical techniques – only useful for some
functions

�  Numerical techniques
�  This is what we will look at today

5

Applications of
minimisation

�  Science
�  Fitting a model function to experimental data
�  Orbital mechanics
�  Optical design

�  Maximise image quality
�  Minimise cost

�  Adaptive Optics
�  Protein folding
�  Optimising control system parameters

�  An example in your pocket:
�  Auto-focus cameras (smart phone)

6

Aside

 Visualising 2D functions

7

•  It’s going to be really useful to be able to visualise
these functions

•  Let’s look at how we do that with Python, numpy
and matplotlib

8

2D plotting
•  We want to visualise f(x, y)

•  Evaluate f(x, y) over a range of evenly spaced x and
y values

•  Store the results in a 2D numpy array

•  Display this with matplotlib

9

2D plotting

10

from __future__ import division
import numpy
import matplotlib.pyplot as pyplot
import matplotlib.colors as colors
import matplotlib.cm

def f(x, y):
 a=numpy.cos(0.2*x**2-0.3*y**2+3)
 b=numpy.sin(2*y-1+numpy.e**x)
 return a*b

2D plotting

11

Define bounds
x0, x1 = -2.5, 2
y0, y1 = -2, 2

#explore 1000 points in x and y
N_POINTS=1000
dx=(x1-x0)/N_POINTS
dy=(y1-y0)/N_POINTS

#generate x and y values
xs=numpy.arange(x0,x1,dx)
ys=numpy.arange(y0,y1,dy)

#array to hold function values
dat=numpy.zeros((len(xs), len(ys)))

2D plotting

12

for ix, x in enumerate(xs):
 for iy, y in enumerate(ys):
 dat[ix,iy]=f(x,y)

pyplot.figure()

Show a greyscale colourmap of the data
im = pyplot.imshow(dat,
 extent=(x0, x1,y0, y1),
 origin='lower',
 cmap=matplotlib.cm.gray)
pyplot.xlabel('x') !
pyplot.ylabel('y') !

pyplot.colorbar(im, orientation='vertical',
label='$f(x,y)$')

pyplot.show()

13

Methods
•  Brute Force and Ignorance

–  Exhaustive Search

•  Deterministic searches
–  Nelder-Mead Simplex
–  Gradient Descent
–  Hill Climbing

•  Stochastic Searches
–  Genetic Algorithm
–  Stochastic Gradient Descent
–  Simulated Annealing

14

Brute Force and
Ignorance

Fast to code
Slow to run

15

Exhaustive Search
�  For every x

�  For every y

�  Is this the smallest f(x, y)?

�  Benefits

�  Trivial to code

�  Drawbacks

�  Slow

�  Not very accurate – it must operate on some finite,
quantised grid

16

Deterministic Methods

17

Deterministic Methods
•  These methods all start from some initial position

•  If you run the same method from the same position
multiple times, you get the same result

18

Gradient Descent

19

Gradient Descent: Algorithm

� Walk downhill

20

Gradient Descent: Algorithm

Maths notation Quantity Python
r! Position vector r = numpy.array(x, y)
()rf ! Function at r! def f((x, y)):

 return ???
()rf !∇ Vector differential of ()rf ! def f((x, y)):

 df_dx = ???
 df_dy = ???
 grad = numpy.array((df_dx, dy_dy)
 return grad

0r
! Initial position r0 = numpy.array((x0, y0))

γ Step size gamma = 0.something

21

()nnn rfrr !!!
∇−=+ γ1

22
Coloured lines are contours - see http://matplotlib.org/examples/pylab_examples/contour_demo.html

23

24

25

26

27

28

29

Step Size
•  Gradient Descent is highly sensitive to the step size,

gamma

•  Too small a step and convergence is very slow

•  Too large a step and it may overshoot and the
method becomes unstable

•  Audience Question: What causes this to happen?

30

Step Size
•  Gradient Descent is highly sensitive to the step size,

gamma

•  Too small a step and convergence is very slow

•  Too large a step and it may overshoot and the
method becomes unstable

•  Curvature and higher order terms mean the gradient
is only locally constant – adaptive step size can
choose a gamma based on curvature measurements
etc.

31

γ to small – slow convergence

32

γ larger – faster convergence

33

γ about right

34

γ to big – oscillatory
convergence

35

γ – perfectly wrong

36

γ far to big - divergence

37

GD Example 2
•  Rosenbrock’s Banana Function

•  A tough test case for minima finding

•  Steep cliffs

•  Very shallow valley

38

f (x, y) = (1− x)2 +100(y− x2)2

39

GD Example 2

40

GD Example 2

Trajectories rapidly enter the valley
then crawl along the shallow gradient
to the minima at (1,1)

Most trajectories run out before then
as we have not run for enough
itterations

41

The method can ‘zig-zag’ in an
unstable manner if the step size is to
large, constantly overshooting the
lowest local value

42

GD in the valley - slow

43

GD in the valley - slow

44

GD in the valley - slow

45

GD in the valley - slow

GD – when to stop?
�  It’s common to have a maximum number of

iterations

�  Another common pattern is to terminate early upon
reaching some convergence criteria

46

Hill Climbing

47

Hill Climbing
�  Hill climbing is similar to gradient descent but

simpler

�  Hill climbing tries moving a small distance in one
dimension only at a time

�  When this no longer works, another dimension is
explored

�  Very simple to code

48

Local Minima

49

50

GD & Local Minima

Pathological example

51

No gradient into the minima

52

Stochastic Methods
Often, a little bit of randomness goes a long way

53

54

Genetic Algorithms

55

Genetic Algorithms
•  Random solutions

•  Survival of the fittest

•  Sexual Reproduction

•  Mutation

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

GA & Local Minima
•  The wide sampling of the initial ‘scattergun’

approach of the GA means that some points should
fall near the global maxima

•  Due to ‘survival of the fittest’ these rapidly form
the basis of the population

71

GA & Local Minima

72

73

Weekly Assessment
�  You are going to implement a 2D Gradient Descent

and plot the results

�  A gradient descent solver starts from a vector point
�  Just like your Euler solver for the spring

�  The solver makes a series of steps that update the
vector position with some function of the vector

�  Just like your Euler solver for the spring

74

