
L2 Computational Physics 
Week 8 – Chaos and Fractals 
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Graph Formatting 
�  Almost all plots and axes are labelled… 

�  Basic exam technique: If  you’re stuck on a hard part 
of  a problem, don’t neglect the easy parts! 
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Graphs beyond this course 
�  Concise, Precise 

�  Axes labels – quantity and unit 

�  Legend – is one required?   

� How to plot data 
� Discrete points – data markers 
� Continuous functions, model fits – plot 

lines 

�  Titles – not usual as CAPTION figure! 
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Exponent notation 
�  I saw a lot of  code like this in the GD assessment 

!if abs(stuff) < 0.0000000012 

�  It’s hard as a human to read that number precisely 

�  Easy to introduce bugs  

�  e.g.   0.000000012 vs 0.0000000012 

�  Python supports exponent notation  
�  A lower case “e” after a number means “multiply 

by ten to the power of  …” 

!if abs(stuff) < 1.2e-9 ! ! 
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Chaos and Fractals 
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Chaotic Systems 
•  A Chaotic System has several properties: 

–  a deterministic system 
–  that is highly sensitive to initial conditions 
–  That exhibits topological mixing 

•  Random and chaotic are not the same 

6 



Deterministic 
�  Some future state is a function of  the 

current state 

�  This should be very familiar by now 

�  state_t1 = f(initial_conditions) 
�  state_t2 = f(state_t1) 
�  state_t3 = f(state_t2) 

�  etc. 7 



Sensitive to Initial Conditions 
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A well tuned gradient descent is sensitive to initial 
conditions but Not chaotic 

Small change in initial conditions 

Big change in final result 



Topological Mixing 
•  Gradient Descent is not chaotic with small 

gamma   
•  simple mapping of  initial position to final 

position - go downhill 

•  Topological mixing  
–  Complicated mathematical definition 
–  Basically it means that things ‘jump all over 

the place’ – dimensions mix apparently 
randomly 
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Mixing Example  
logistics equation 
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def f(x, y): "
!x1 = 4 * x * (1-x) "
!if x + y < 1: "
! !y1 = x + y "
!else: "
! !y1 = x + y – 1 "
!return x1, y1 "
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Chaotic System : Recap 
•  Deterministic 

•  Sensitive to initial conditions 

•  Topological mixing 
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The driven pendulum 
•  Pendulum 

 
•  Now add a periodic driving force of frequency ωd 
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Results 
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Results 
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Results 
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Phase Wrapping 
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‘Butterfly Effect’ 
•  A tiny change in the initial conditions has a 

large impact on the state at later times 

•  Dramatic implications for numerical 
modelling 
– Weather 
–  Stock Market 
–  N-body dynamics 
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�  periodic driving force  
–  frequency ωd 

–  amplitude A 

�  Linear damping, q 

Damped, Driven Pendulum 
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A=1.0 
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A=1.1 
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A=1.2 
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A=1.3 
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A=1.4 
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A=1.5 
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Butterfly Effect 
•  Butterfly Effect is still present with damping! 

•  Even though you might naively expect damping 
would decrease the importance of  initial conditions 
over time 
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Recap: Phase Space 
•  Multidimensional space  

•  One dimension for each variable composing 
system state 

•  Typically position & momentum/velocity 

•  Pendulum 
–  Angular displacement 
–  Angular velocity 
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Phase Space: Pendulum 
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Phase Space – Damped 
Pendulum 
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Damped, Driven – A = 1.0 
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Damped, Driven – A = 1.1 
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Damped, Driven – A = 1.2 
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Damped, Driven – A = 1.3 
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Damped, Driven – A = 1.4 
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Damped, Driven – A = 1.5 
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Damped, Driven – A = 1.6 

46 



Chaotic Weather 
�  NWP: Numerical Weather Prediction 

�  Divide atmosphere into 3D grid of  points 

�  For each point write DEQs: 

� Heat transfer (conduction) 

� Solar irradiance / absorption  

� Mass flow (wind, moisture) 
� Etc. etc. 

�  Solve numerically 

�  Global forecast models on an XY grid of  ~40km 

�  Small changes in inputs -> chaos 
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US GFS temperature at 
850hpa line 
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Fractals 
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Fractal 
•  A fractal is a specific class of  geometric shapes  

•  A shape is deemed fractal if  it has self similarity  
–  Scale invariant 
–  It looks the same at different scales 

•  It may be self  similarity off  
–  Appearance 
–  Statistics 
–  Some other feature 
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Fractals and Nature 
•  Many natural processes form shapes with fractal 

properties 

–  River systems 
–  Coast lines 

–  Lightning 
–  Snow flakes 
–  Many more 
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Fractal Dimension 
•  The self-similarity of  fractals means they contain 

endless detail – the more you zoom in, the more 
detail there is 

•  This means there is no answer to questions like 
“How long is my fractal” 

•  The measured length depends upon the scale you 
measure on 
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Example: Rivers 
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Example: Rivers 
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Example: Rivers 
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Example: Rivers 
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Fractal Dimension 
•  The smaller our measurement scale, ‘G’, the greater our 

measured length, ‘L’ 

•  ‘D’ is the ‘Hausdorff dimension’ or ‘fractal dimension’ – 
it is some constant for a given geometry that characterises 
its scaling 

DGGL −∝ 1)(
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Escape-time fractals 

Random Fractals 

Iterated function systems 

Strange Attractors 



Random Fractals 
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Random Fractals 
•  Many natural processes have fractal aspects 

•  For example Random Walks  
–  Self  similarity / scale invariance in the statistics as 

much as the trajectories 
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Iterated Function 
System Fractals 
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Iterated Function System 
•  Take a shape 

•  Make multiple transformed copies  
–  Transform by a function 

•  Iterate 
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IFS : Sierpinski 
Triangle 
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Shrink 
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Transform: Shrink 

69 



Transform: Triplicate 
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Iterate 
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Iterate 
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Iterate 
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Fractals and Chaos 
•  Fractals and Chaos are different but connected 

•  Many ways of  visually presenting chaotic 
systems produce fractals 

•  For example, the behaviour of  many recursive 
functions is highly sensitive to the initial value 
–  Visualising this produces fractals 
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Recursive Function 
Fractals 

AKA Escape Time Fractals 
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Recursive Function Fractals 
•  Given: 

–  Initial value Z0 

–  A position (x, y) 
–  An function Zn+1 = f(Zn, x, y) 

•  Apply the function recursively many times 

•  Does |Z| tend to 0 or infinity? 
–  Define a set of  all points where |Z|à0 
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Complex Numbers 
In Python 
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Complex Numbers in Python 
•  Python supports imaginary and complex numbers out of the box 

•  Append a ‘j’ (Jay, not ‘i’) to a number to make it imaginary 

•  DOES NOT NEED A NUMPY ARRAY 
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Example 1 
�  Zn+1 = Zn

2 + |(x,y)|2 
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Example 1 
�  Zn+1 = Zn

2 + |(x,y)|2 
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To speed things up we exit 
the ‘for’ loop early if we 
detect that our value is 
tending to infinity 

 

We exit the loop early with 
the break statement. 



Example 1 
�  Zn+1 = Zn2 + |(x,y)|2 "
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If this condition is true it 
means that the ‘for’ loop is 
exhausted – it didn’t break 
early. 

 

We assume that this means 
the value is not tending to 
infinity but to zero 



Example 1 
�  Zn+1 = Zn2 + |(x,y)|2 "
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Example 2 
�  Zn+1 = Zn

2 + x + iy      Complex plane 
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Mandelbrot Set 
•  A set (collection)  

–  of  all points (x, y) 
–  Where the formula Zn+1 = Zn

2 + (x+iy) remains bounded – i.e. 
magnitude does not tend to infinity 

•  The Mandelbrot set results from the recursion being chaotic 
–  A tiny change in initial position has a large effect (inside/outside the 

set) 

•  The Mandelbrot set displays  
–  an incredible level of  endless detail when zoomed 
–  Self  similarity at all levels 
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Making it pretty 
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Making it pretty 
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Colour points based on: 

 Inside the set (white) 

 Outside the set (black) 

 

Informative but dull 



Making it pretty 
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•  Colour points based on how quickly 
the recursion ‘escapes’ from the set 
– i.e. how fast it is tending to infinity 

•  Not as interesting mathematically 

•  But it was the key step to getting 
fractals into the wider public eye! 



Exploring the Mandelbrot 
Set 

�  Fractint / Winfract 

�  I was using this 20+ years ago, and it’s got staying 
power! 

�  http://www.fractint.org/ 
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We have now zoomed in 
~100,000,000x from the first 
image 

 

That’s similar to the ratio 
between a person and a virus 

 

The complexity in the 
Mandelbrot set appears 
endless 

 

Exploring it certainly 
challenges computers 

 Precision! 



Root Finding 
A change of  tack? 

101 



Root Finding 
•  Root finding algorithms look for the root(s) of  a function 

•  I.e.: 
–  Given f(x) 
–  Find a value of  x where f(x) = 0 

•  Numerical methods 
–  Bisection 
–  Newton-Raphson 
–  Secant 
–  Many more 
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Newton Raphson 
•  Iterative method  

–  Starts from a seed point, X0  

–  (normally) converges on the nearest root 

•  See whiteboard for use 

•  Found root can be chaotic in the presence of  
multiple roots 

•  You are going to investigate and plot this for your 
last weekly assessment 
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