L2 Computational Physics Week 8 – Chaos and Fractals

Graph Formatting

- Almost all plots and axes are labelled...
- Basic exam technique: If you're stuck on a hard part of a problem, don't neglect the easy parts!

Graphs beyond this course

- Concise, Precise
- Axes labels quantity and unit
- Legend is one required?
- How to plot data
 - Discrete points **data markers**
 - Continuous functions, model fits plot lines
- Titles not usual as CAPTION figure!

Exponent notation

- I saw a lot of code like this in the GD assessment
 if abs(stuff) < 0.000000012
- It's hard as a human to read that number precisely
 - Easy to introduce bugs
 - e.g. 0.00000012 vs 0.000000012
- Python supports exponent notation
 - A lower case "e" after a number means "multiply by ten to the power of ..."
 - if abs(stuff) < 1.2e-9</pre>

Chaos and Fractals

Chaotic Systems

- A Chaotic System has several properties:
 - a deterministic system
 - that is highly sensitive to initial conditions
 - That exhibits topological mixing

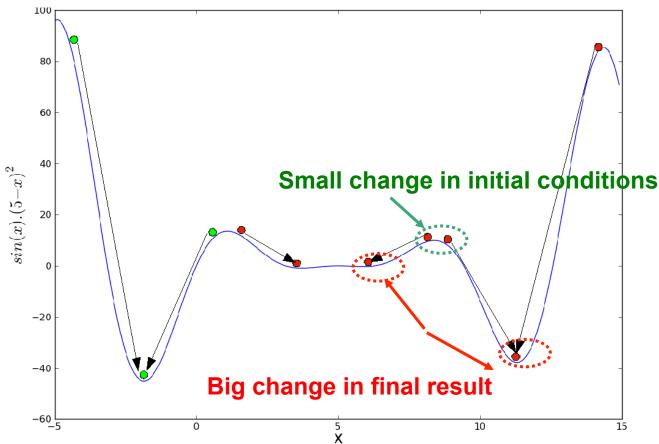
• Random and chaotic are not the same

Deterministic

- Some future state is a function of the current state
- This should be very familiar by now
- state_t1 = f(initial_conditions)
- state_t2 = $f(state_t1)$
- state_t3 = $f(state_t2)$

Sensitive to Initial Conditions

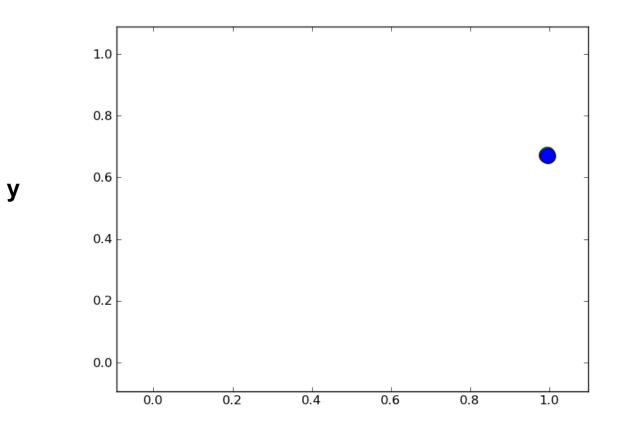
A well tuned gradient descent is sensitive to initial conditions but **Not** chaotic

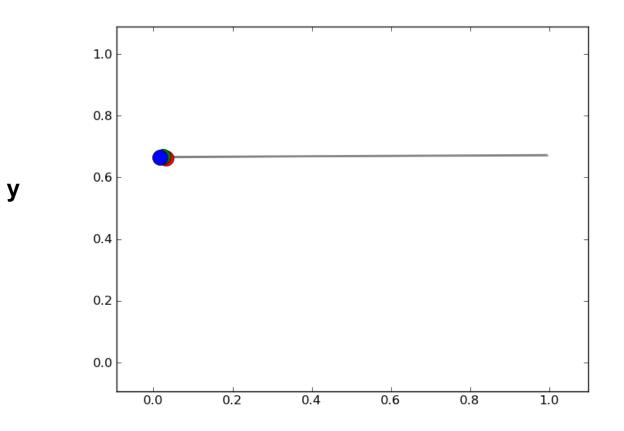


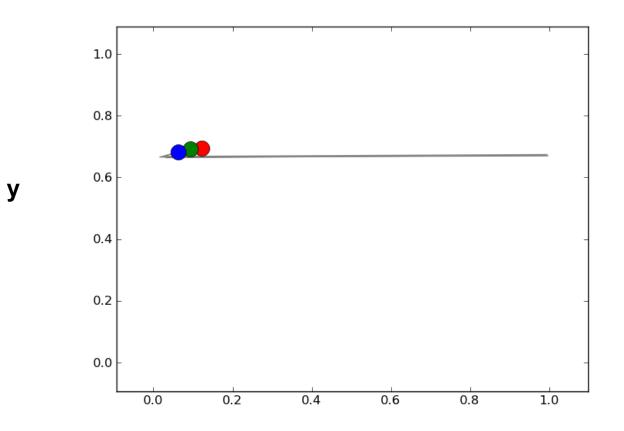
Topological Mixing

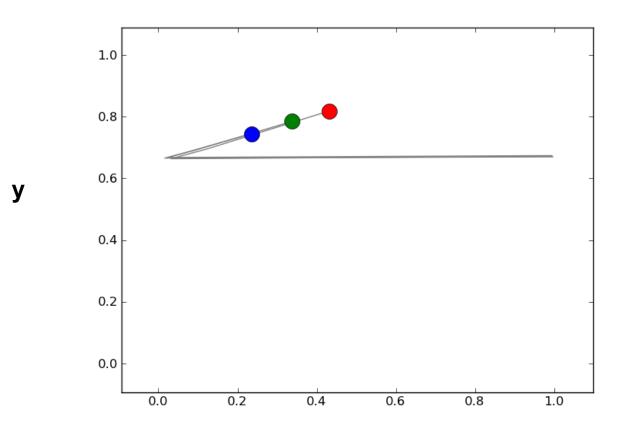
- Gradient Descent is not chaotic with small gamma
 - simple mapping of initial position to final position go downhill
- Topological mixing
 - Complicated mathematical definition
 - Basically it means that things 'jump all over the place' – dimensions mix apparently randomly

Mixing Example logistics equation

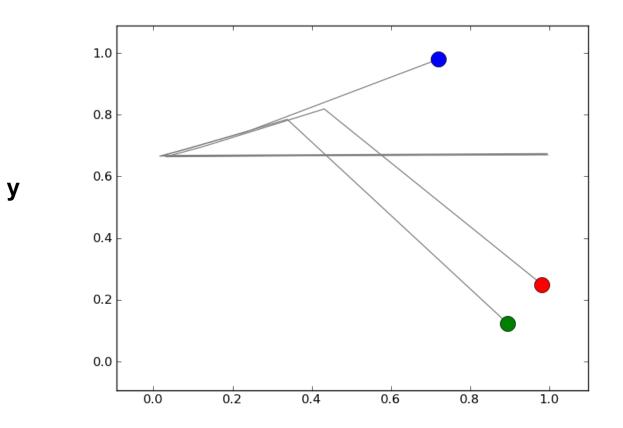


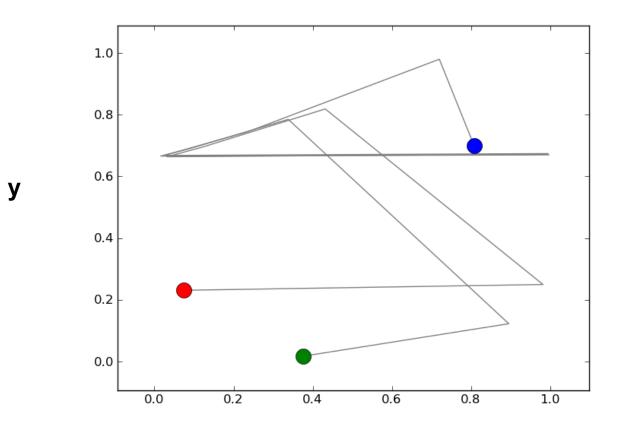




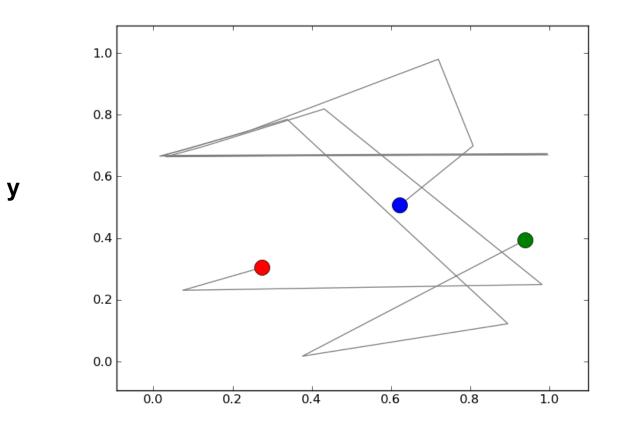


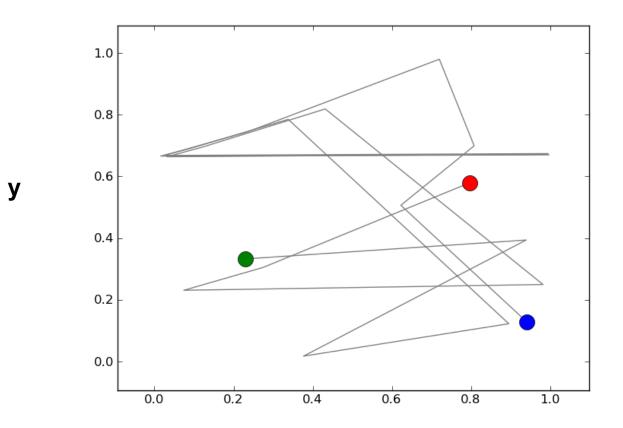
Χ



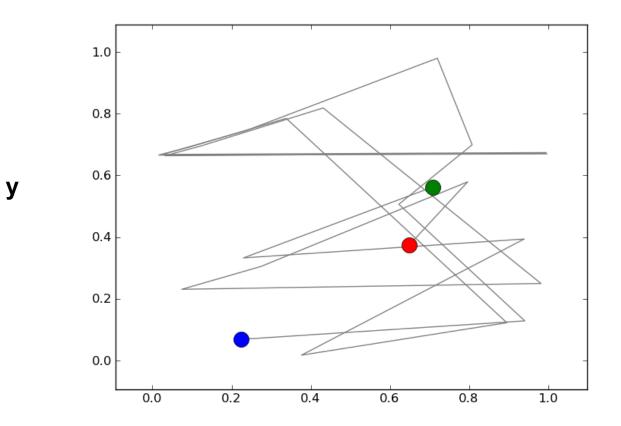


Χ

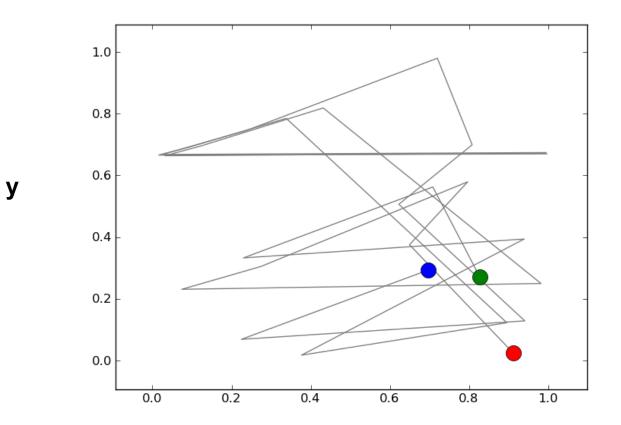




Χ



X



Chaotic System : Recap

- Deterministic
- Sensitive to initial conditions
- Topological mixing

The driven pendulum

• Pendulum

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin(\theta)$$

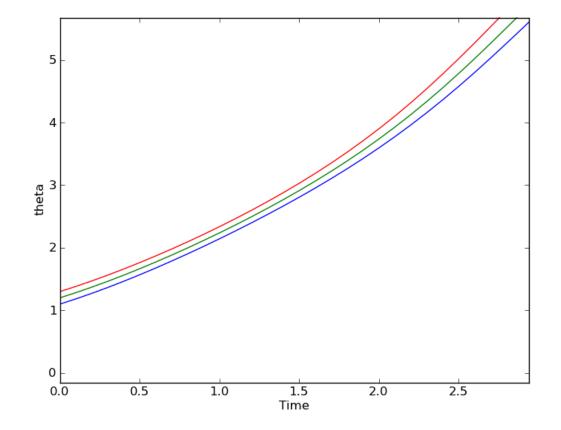
• Now add a periodic driving force of frequency ω_d

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin(\theta) + A\cos(\omega_d t)$$

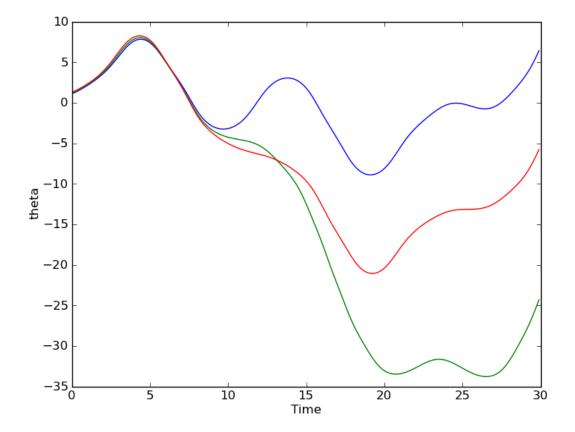
```
O O driven1.py – /Users/cds/cds/Teaching/2014–2015/L2 CompPhys/Week 8 – Ch...
from __future__ import division
import numpy
import scipy.integrate
import matplotlib.pyplot as pyplot
A = 1.5 # 1.5 is good
omega_d = 2/3
def f((theta, omega), t):
    ''' DEQ for a driven pendulum '''
    domega = - numpy.sin(theta) + A*numpy.cos(omega_d*t)
    dtheta = omega
    return dtheta, domega
def sim(theta0, omega0):
    ''' Wrapper function for the pendulum DEQ that generates
    a timebase, invokes ODEINT and seperates the return
    variables '''
    timebase = numpy.arange(0, 30, 0.1)
    x = scipy.integrate.odeint(f, (theta0, omega0), timebase)
    theta, omega = x[:,0], x[:,1]
    return timebase, theta, omega
t0, theta0, omega0 = sim(1.10, 0.8)
t1, theta1, omega1 = sim(1.20, 0.8)
t2, theta2, omega2 = sim(1.30, 0.8)
def modfunc(x): # Phase wrapping
    return (x + numpy.pi) % (2*numpy.pi) - numpy.pi
pyplot.figure()
pyplot.plot(t0, modfunc(theta0))
pyplot.plot(t1, modfunc(theta1))
pyplot.plot(t2, modfunc(theta2))
pyplot.xlabel('Time')
pyplot.ylabel('theta')
pyplot.show()
```

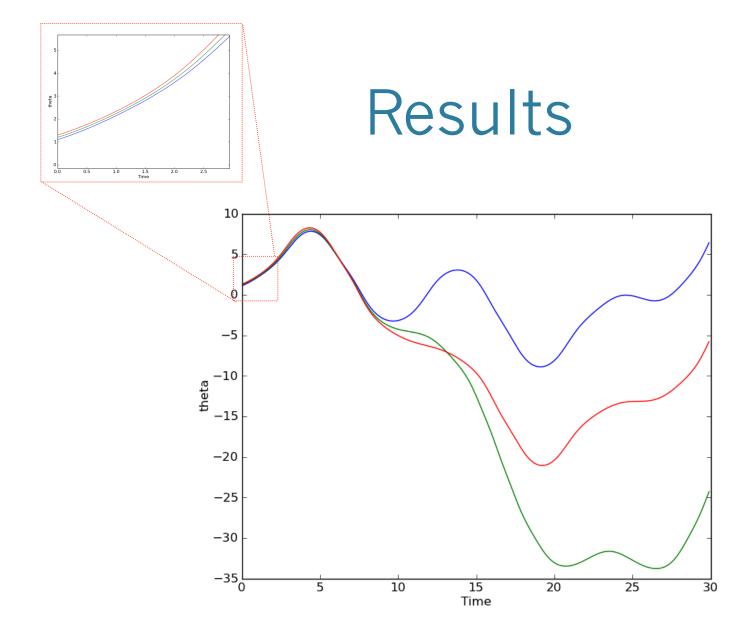
```
Ln: 30 Col: 32
```

Results

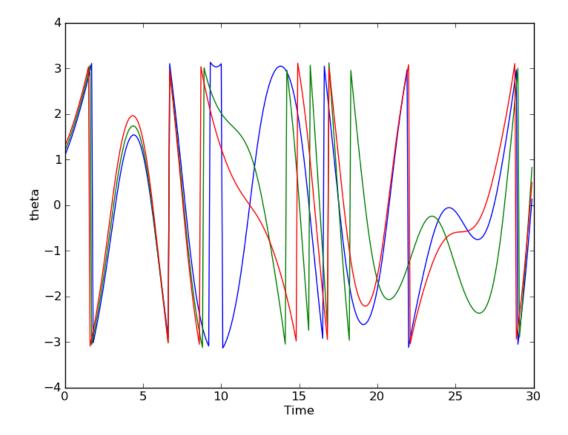


Results





Phase Wrapping



'Butterfly Effect'

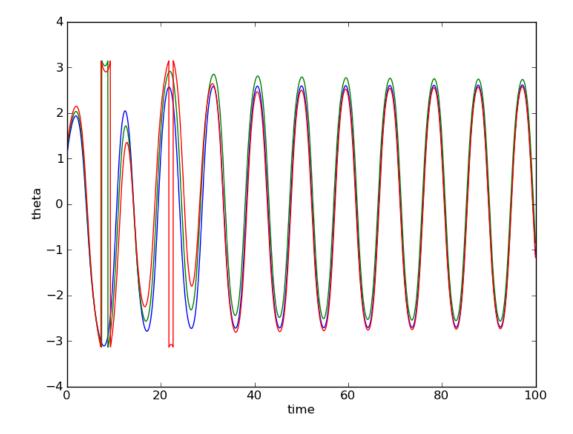
- A tiny change in the initial conditions has a large impact on the state at later times
- Dramatic implications for numerical modelling
 - Weather
 - Stock Market
 - N-body dynamics

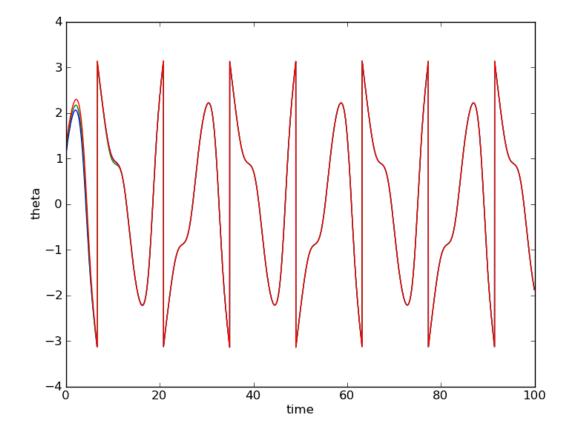
Damped, Driven Pendulum

- periodic driving force
 - frequency ω_{d}
 - amplitude A
- Linear damping, q

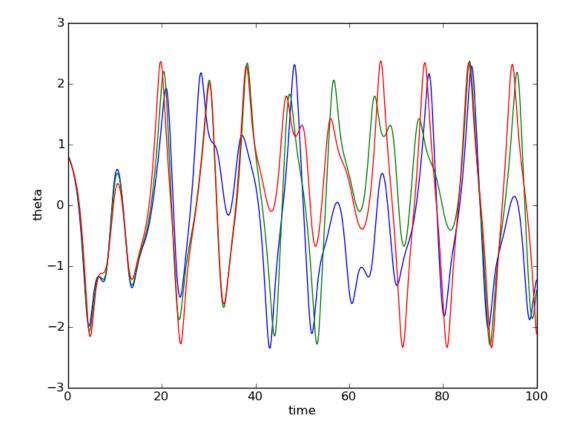
$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin(\theta) + A\cos(\omega_d t) - \frac{1}{q}\frac{d\theta}{dt}$$

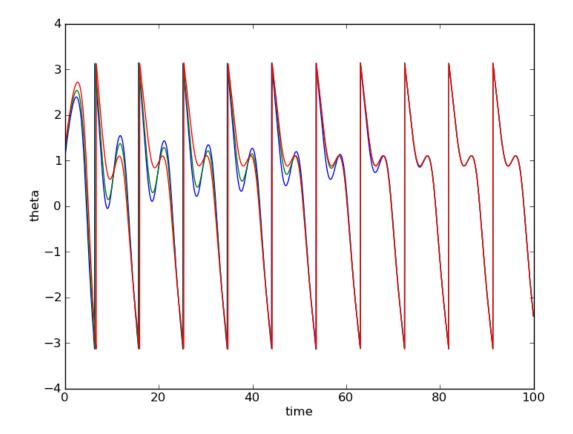
A=1.0

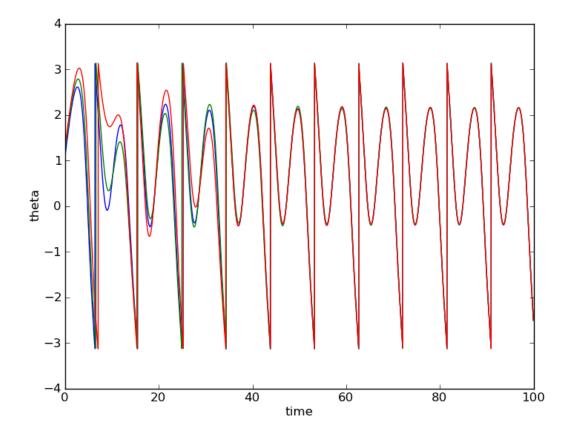




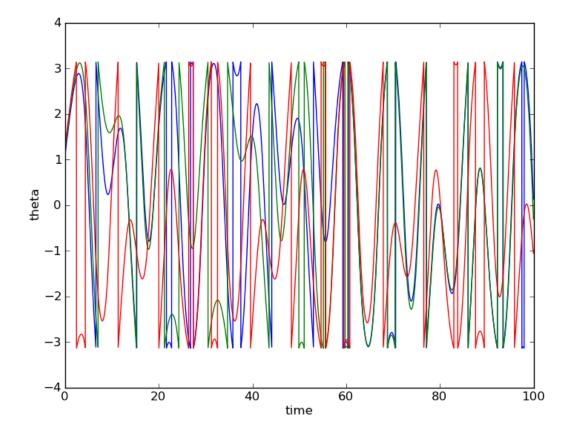
A=1.2







A=1.5



Butterfly Effect

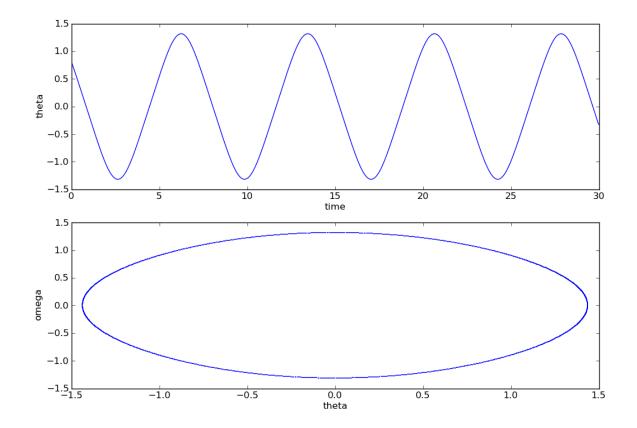
• Butterfly Effect is still present with damping!

 Even though you might naively expect damping would decrease the importance of initial conditions over time

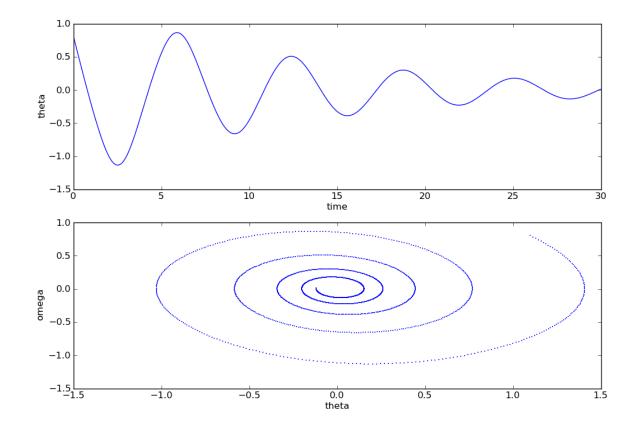
Recap: Phase Space

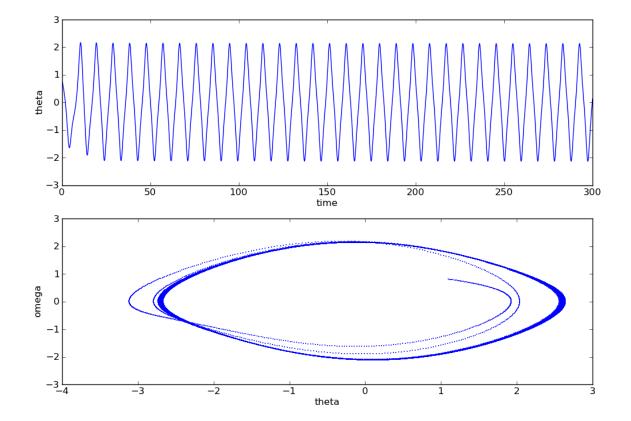
- Multidimensional space
- One dimension for each variable composing system state
- Typically position & momentum/velocity
- Pendulum
 - Angular displacement
 - Angular velocity

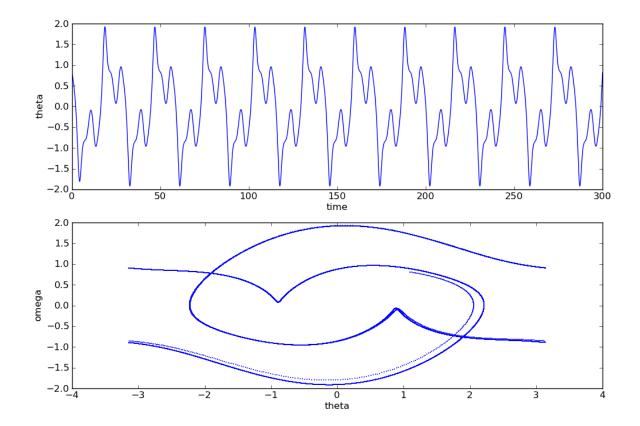
Phase Space: Pendulum

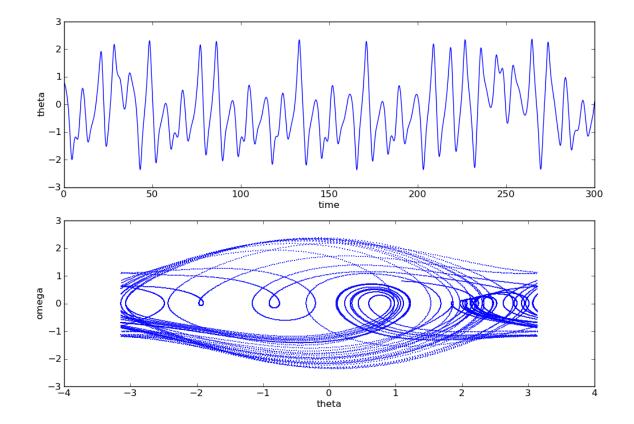


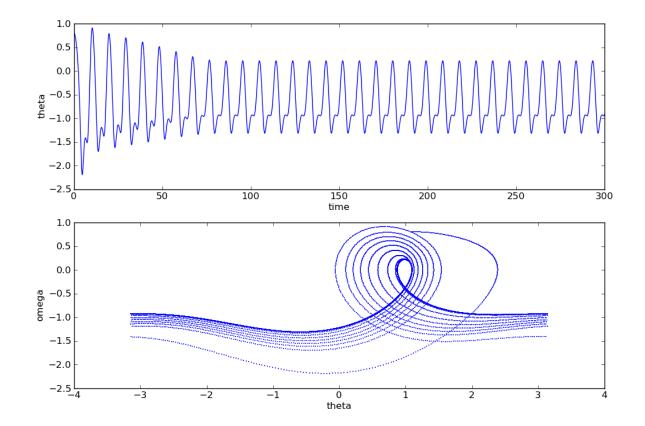
Phase Space – Damped Pendulum

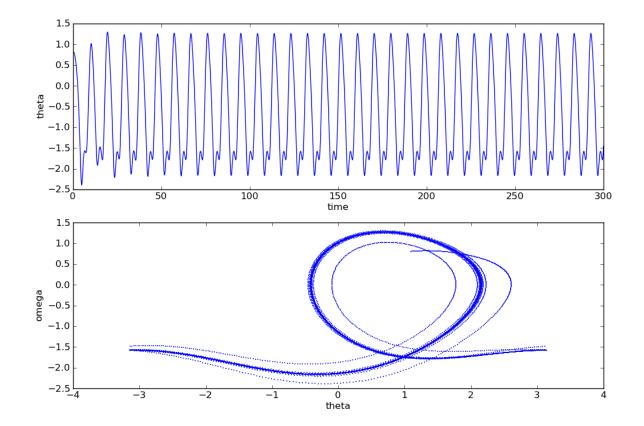


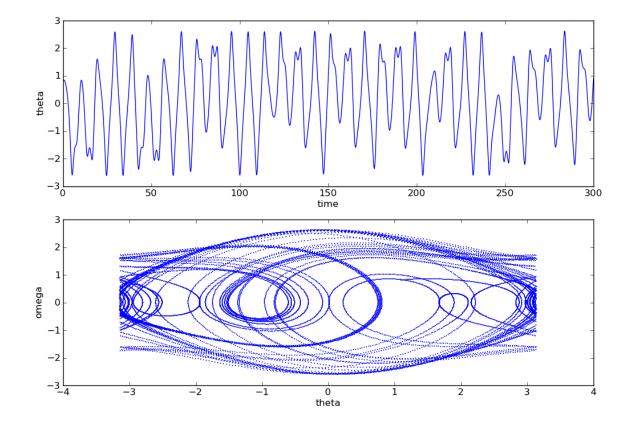


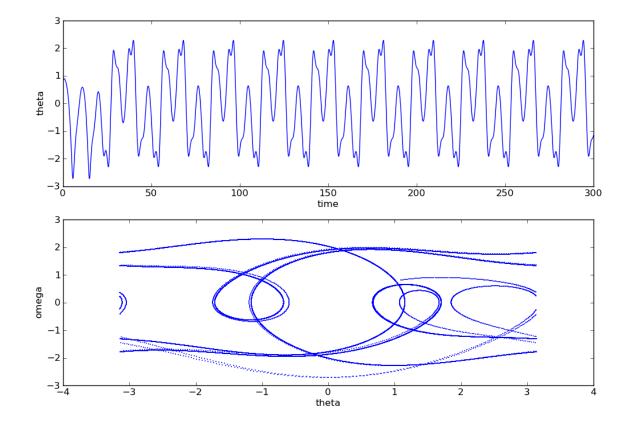








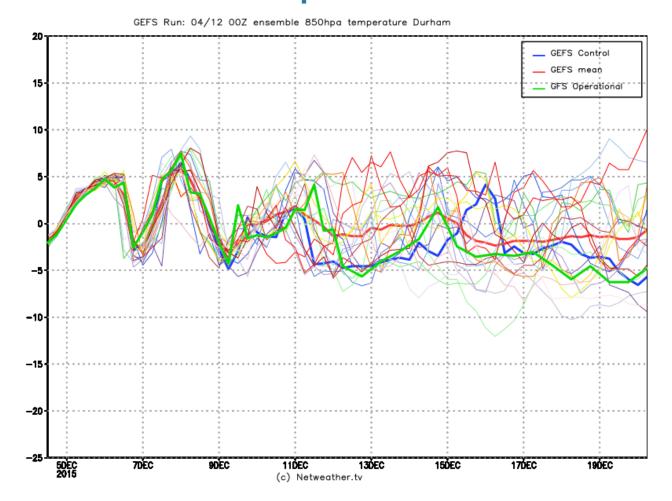




Chaotic Weather

- NWP: Numerical Weather Prediction
 - Divide atmosphere into 3D grid of points
 - For each point write DEQs:
 - Heat transfer (conduction)
 - Solar irradiance / absorption
 - Mass flow (wind, moisture)
 - Etc. etc.
 - Solve numerically
- Global forecast models on an XY grid of ~40km
- Small changes in inputs -> chaos

US GFS temperature at 850hpa line



Fractals

Fractal

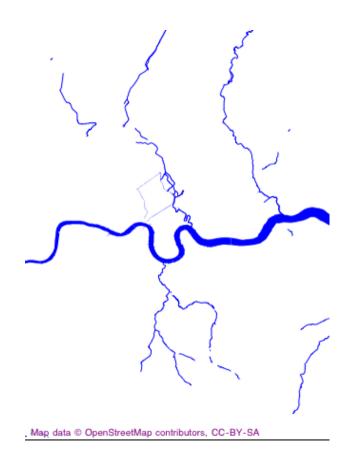
• A fractal is a specific class of geometric shapes

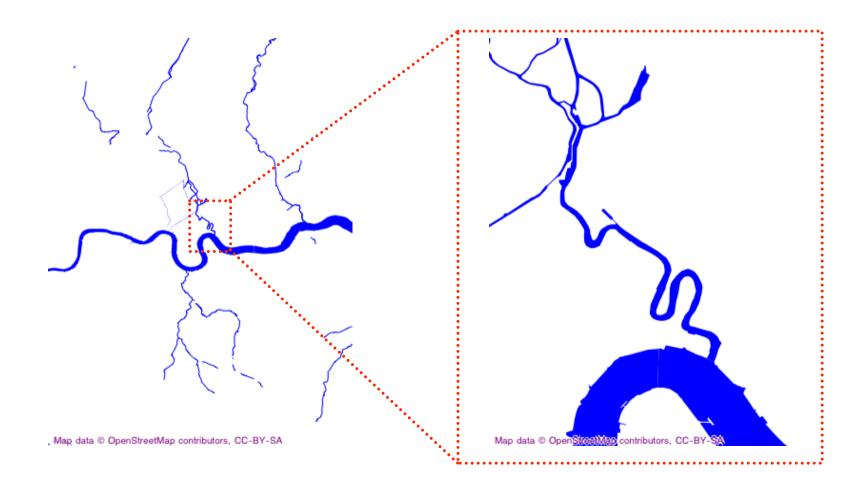
- A shape is deemed fractal if it has self similarity
 Scale invariant
 - It looks the same at different scales
- It may be self similarity off
 - Appearance
 - Statistics
 - Some other feature

Fractals and Nature

 Many natural processes form shapes with fractal properties

- River systems
- Coast lines
- Lightning
- Snow flakes
- Many more



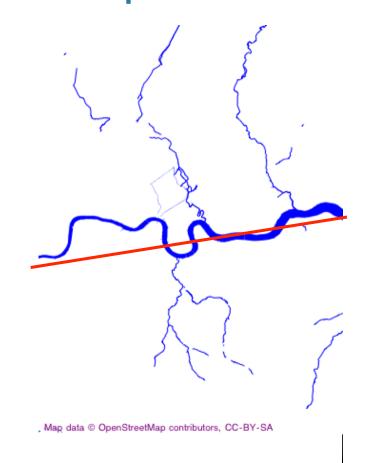


Fractal Dimension

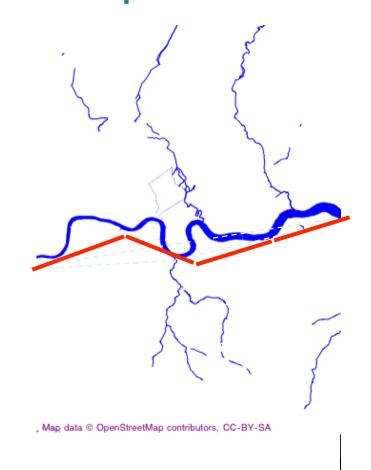
• The self-similarity of fractals means they contain endless detail – the more you zoom in, the more detail there is

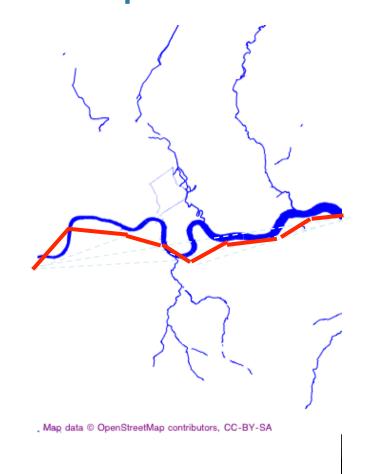
• This means there is no answer to questions like "How long is my fractal"

• The measured length depends upon the scale you measure on









Fractal Dimension

• The smaller our measurement scale, 'G', the greater our measured length, 'L'

 $L(G) \propto G^{1-D}$

• 'D' is the 'Hausdorff dimension' or 'fractal dimension' – it is some constant for a given geometry that characterises its scaling

Random Fractals

Escape-time fractals

Iterated function systems

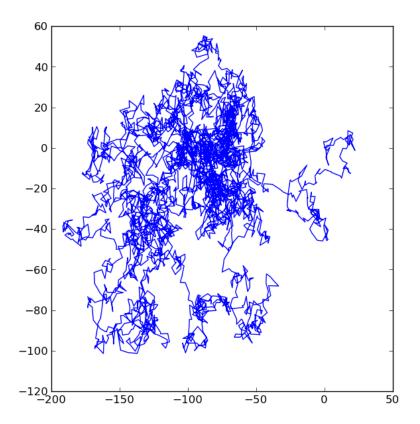
Strange Attractors

Random Fractals

Random Fractals

• Many natural processes have fractal aspects

- For example Random Walks
 - Self similarity / scale invariance in the statistics as much as the trajectories





Iterated Function System Fractals

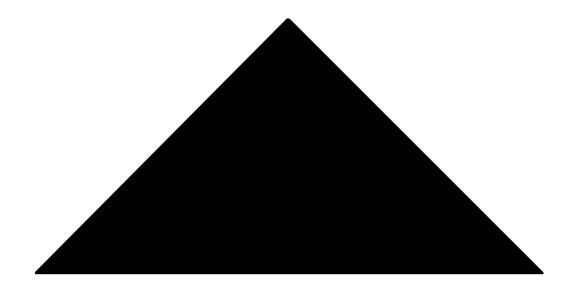
Iterated Function System

• Take a shape

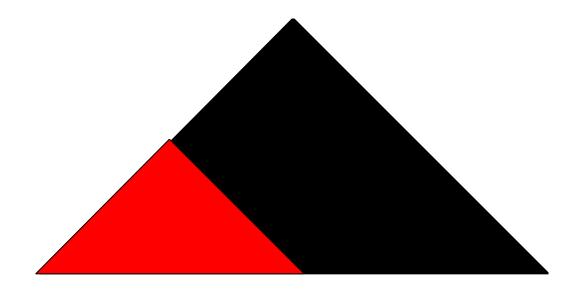
- Make multiple transformed copies
 - Transform by a function
- Iterate

IFS : Sierpinski Triangle

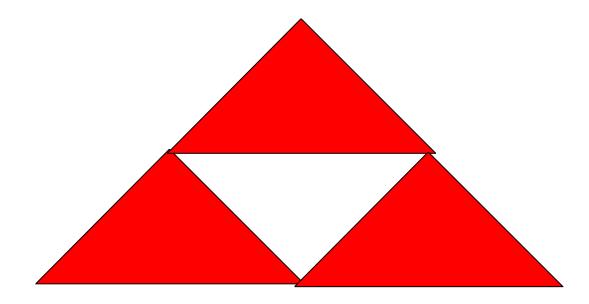
Shrink



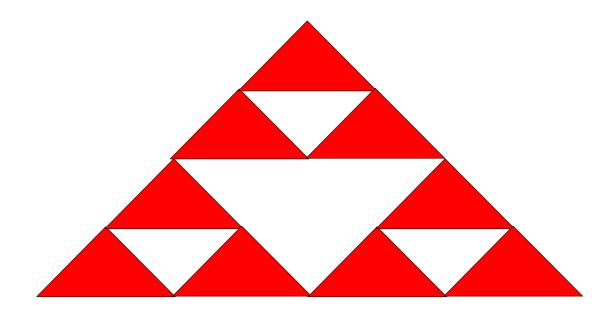
Transform: Shrink



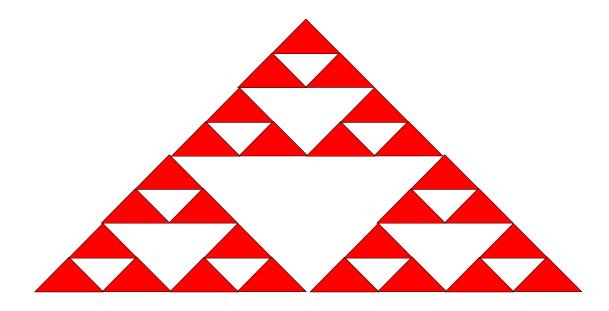
Transform: Triplicate



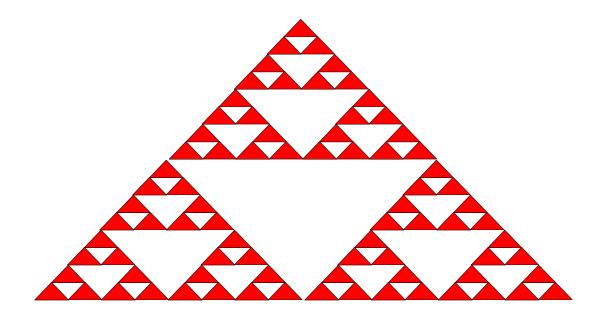
Iterate



Iterate



Iterate



Fractals and Chaos

• Fractals and Chaos are different but connected

 Many ways of visually presenting chaotic systems produce fractals

- For example, the behaviour of many recursive functions is highly sensitive to the initial value
 - Visualising this produces fractals

Recursive Function Fractals

AKA Escape Time Fractals

Recursive Function Fractals

- Given:
 - Initial value Z_0
 - A position (x, y)
 - An function $Z_{n+1} = f(Z_n, x, y)$
- Apply the function recursively many times

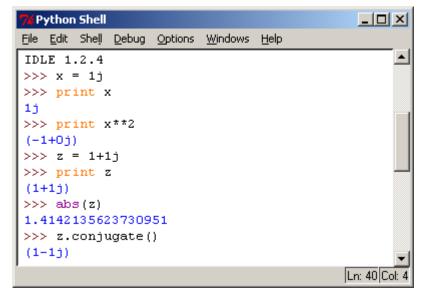
Does |Z| tend to 0 or infinity?
Define a set of all points where |Z|→0

Complex Numbers

In Python

Complex Numbers in Python

- Python supports imaginary and complex numbers out of the box
- Append a 'j' (Jay, not 'i') to a number to make it imaginary
- DOES NOT NEED A NUMPY ARRAY



• $Z_{n+1} = Z_n^2 + |(x,y)|^2$

<u>File E</u> dit F <u>o</u> rmat <u>R</u> un <u>O</u> ptions <u>W</u> indows <u>H</u> elp						
<pre>fromfuture import division import numpy import matplotlib.pyplot as pyplot import matplotlib.cm</pre>						
def f(x, y): z0 = 0 c = (x**2 + y**2) z = z0 MAX_ITER = 10 for i in range(MAX_ITER): z = z**2 + c if abs(z) > 1: break						
return i == MAX_ITER-1						
Ln: 15 Col. 8						

• $Z_{n+1} = Z_n^2 + |(x,y)|^2$

<u>F</u> ile	<u>E</u> dit	F <u>o</u> rmat	<u>R</u> un	Options	<u>W</u> indows	<u>H</u> elp	
imp imp	ort ort	numpy	otli	b.pypl	divisi ot <mark>as</mark> p		
def	zO c z MAX	if a	= 1 ran z**2	.0 nge(MAX + c :) > 1:	_ITER):		
	re	turn i	==	MAX_IT	ER-1	Ln: 15	Col: 8

To speed things up we exit the 'for' loop early if we detect that our value is tending to infinity

We exit the loop early with the **break** statement.

• $Z_{n+1} = Z_n^2 + |(x,y)|^2$

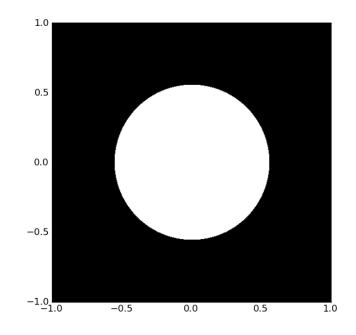
Eile Edit Format Run Options Windows Help							
from future import division import numpy import matplotlib.pyplot as pyplot import matplotlib.cm							
<pre>def f(x, y): z0 = 0 c = (x**2 + y**2) z = z0</pre>							
MAX_ITER = 10 for i in range(MAX ITER):							
z = z**2 + c							
if abs(z) > 1: break							
return i == MAX_ITER-1							
Ln: 15[Col: 8							

If this condition is true it means that the 'for' loop is exhausted – it didn't break early.

We assume that this means the value is not tending to infinity but to zero

• $Z_{n+1} = Z_n^2 + |(x,y)|^2$

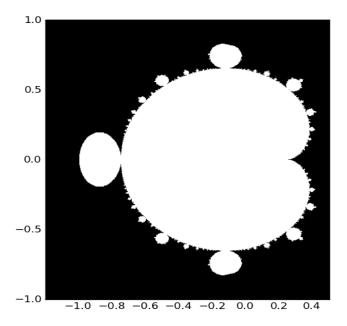
<u>File Edit Format Run Options Windows Help</u>	
<pre>from _future_ import division import numpy import matplotlib.pyplot as pyplot import matplotlib.cm</pre>	
<pre>def f(x, y): z0 = 0 c = (x**2 + y**2) z = z0</pre>	
$MAX_ITER = 10$ for i in range(MAX_ITER): $z = z^{**2} + c$ if abs(z) > 1: $break$	
return i == MAX_ITER-1	▼ `o!• 0
jun: toju	,oi: 8



• $Z_{n+1} = Z_n^2 + x + iy$

Complex plane

Eile	<u>E</u> dit	F <u>o</u> rmat	<u>R</u> un	Options	<u>W</u> indows	Help
det	zO c [:] MA fo:	z = if a	= 2 ran z**2 bs(z bres	- 00 1ge(MAX + c :) > 1:	ER-1	
						Ln



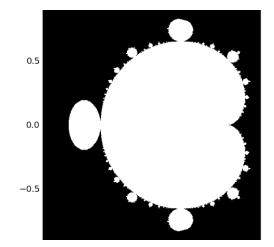
Mandelbrot Set

- A set (collection)
 - of all points (x, y)
 - Where the formula $Z_{n+1} = Z_n^2 + (x+iy)$ remains bounded i.e. magnitude does not tend to infinity
- The Mandelbrot set results from the recursion being chaotic
 - A tiny change in initial position has a large effect (inside/outside the set)
- The Mandelbrot set displays
 - an incredible level of endless detail when zoomed
 - Self similarity at all levels

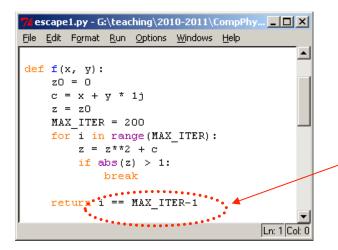
Making it pretty

🎀 escape1.py - G:\teaching\2010-2011\CompPhy 💶 🗙							
<u>File E</u> dit Format <u>R</u> un <u>O</u> ptions <u>W</u> indows <u>H</u> elp							
<pre>def f(x, y):</pre>							
z0 = 0							
c = x + y * 1j							
z = z0							
MAX_ITER = 200							
for i in range (MAX_ITER):							
$z = z^{**2} + c$							
if abs(z) > 1: break							
Dicar							
return i == MAX_ITER-1							
Ln: 1 Col: 0							

74 esca	pe1	.py - G	:/teac	hing/20:	10-2011/0	iompPh.			
<u>File E</u> o	it F	- <u>o</u> rmat	<u>R</u> un	Options	<u>W</u> indows	<u>H</u> elp			
	:0 =		y *	1j			<u> </u>		
1	z = z0 MAX_ITER = 200 for i in range(MAX_ITER): z = z**2 + c if abs(z) > 1: break								
1	eti	ırn i				I			

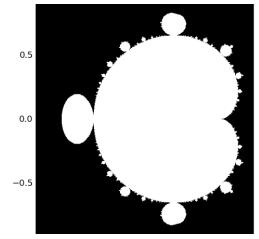


Making it pretty



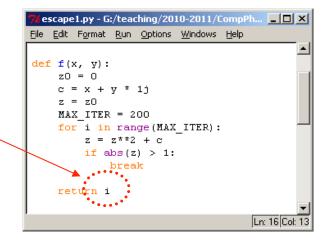
Colour points based on: Inside the set (white) Outside the set (black)

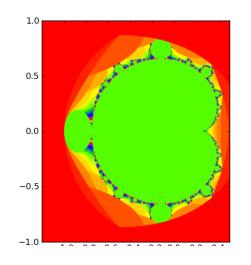
Informative but dull



Making it pretty

- Colour points based on how quickly the recursion 'escapes' from the set – i.e. how fast it is tending to infinity
- Not as interesting mathematically
- But it was the key step to getting fractals into the wider public eye!



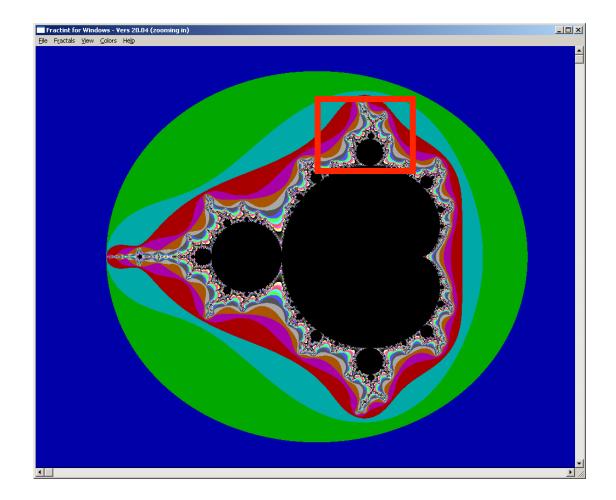


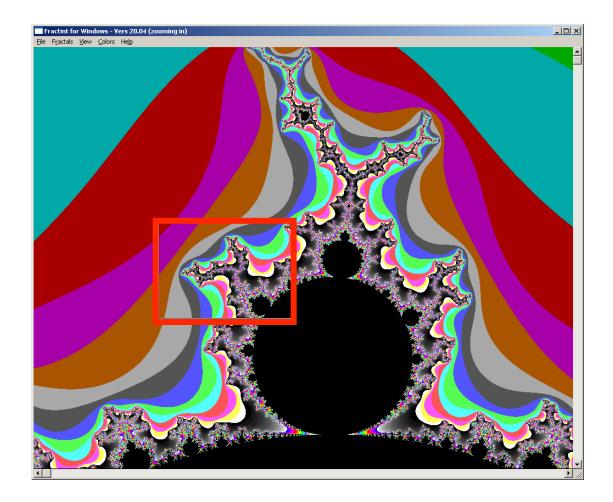
Exploring the Mandelbrot Set

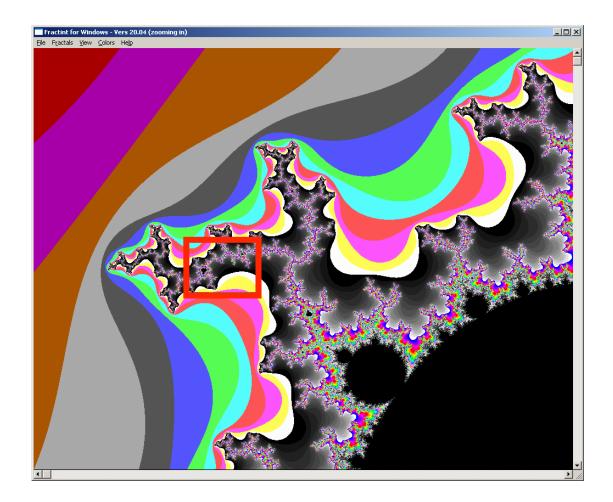
• Fractint / Winfract

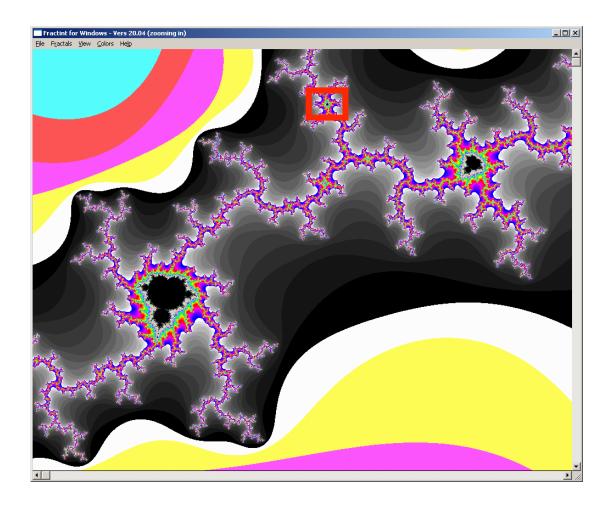
 I was using this 20+ years ago, and it's got staying power!

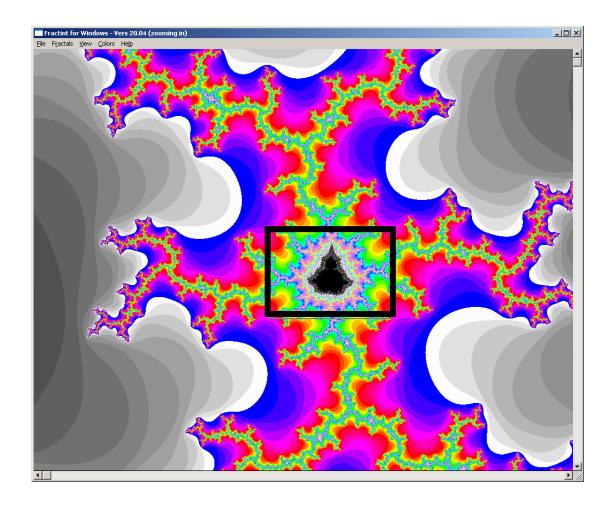
<u>http://www.fractint.org/</u>

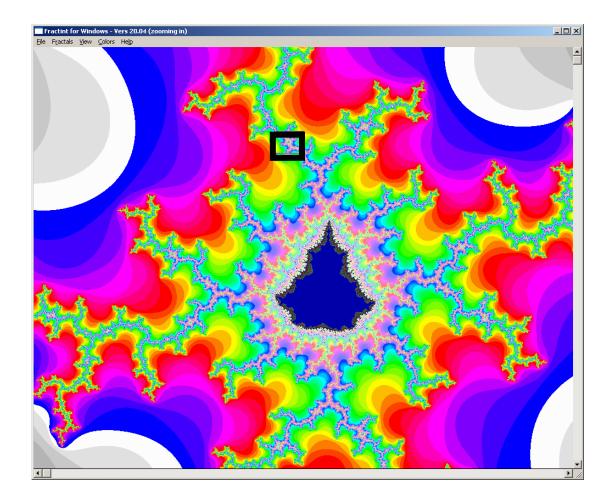


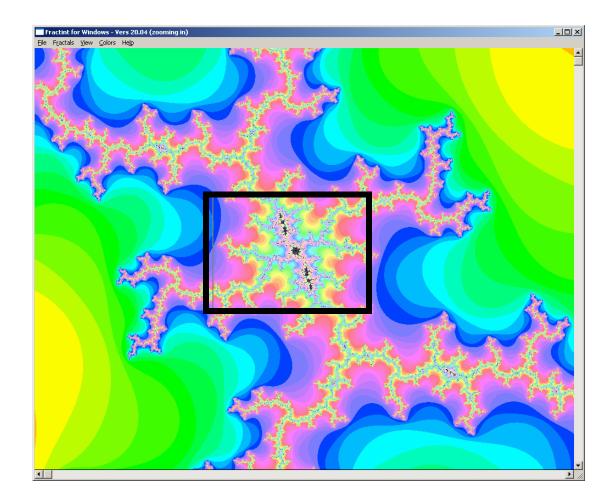


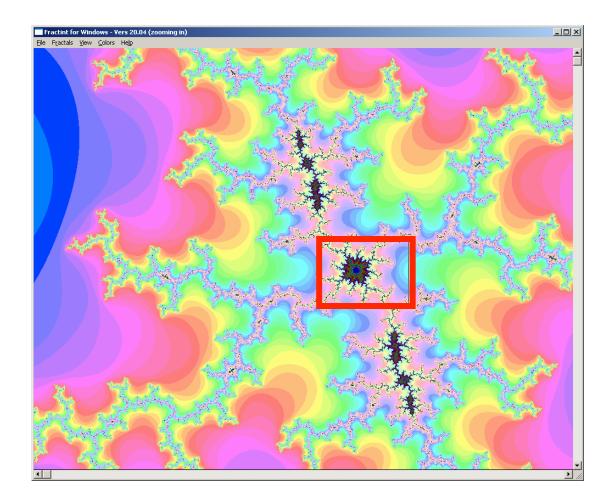


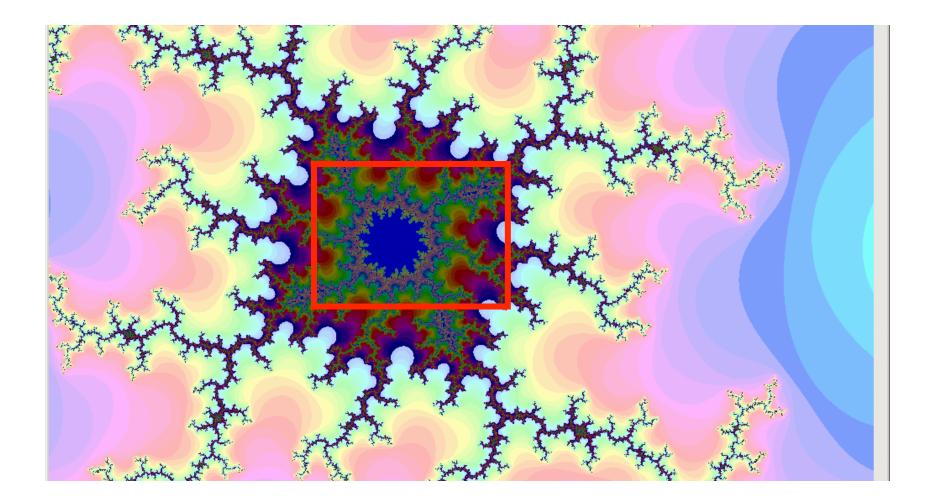


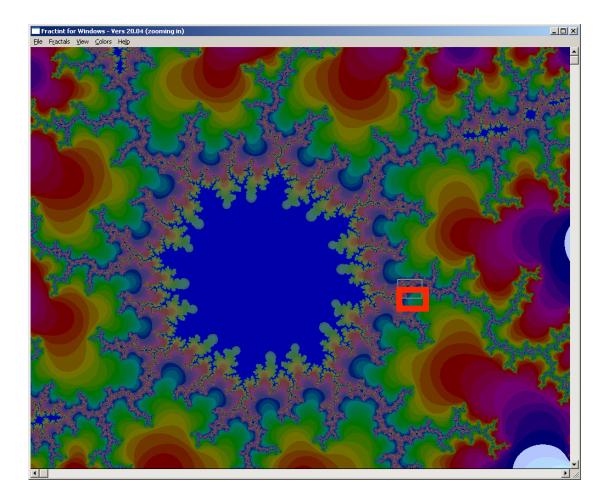


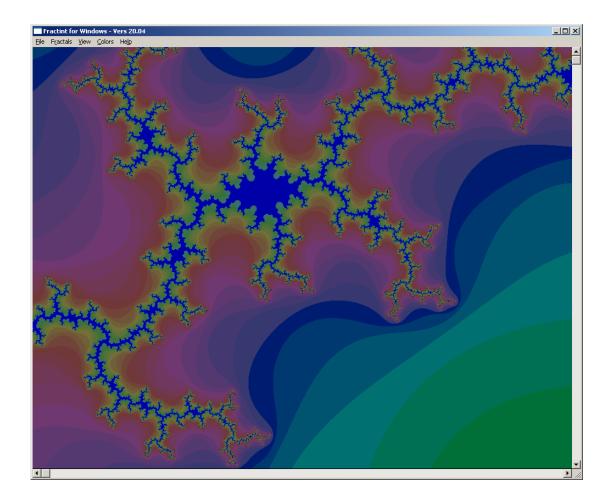


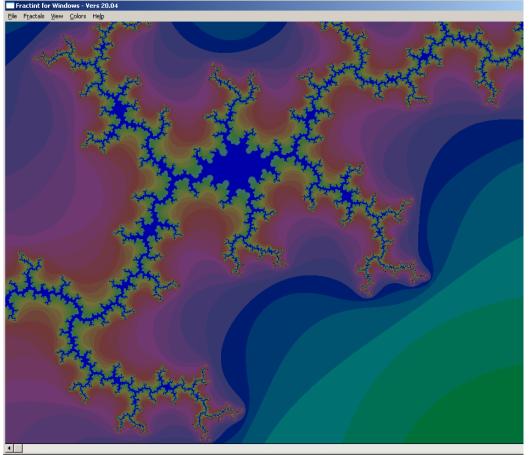












We have now zoomed in ~100,000,000x from the first image

That's similar to the ratio between a person and a virus

The complexity in the Mandelbrot set appears endless

Exploring it certainly challenges computers

Precision!

Root Finding

A change of tack?

Root Finding

• Root finding algorithms look for the root(s) of a function

- I.e.:
 - Given f(x)
 - Find a value of x where f(x) = 0
- Numerical methods
 - Bisection
 - Newton-Raphson
 - Secant
 - Many more

Newton Raphson

- Iterative method
 - Starts from a seed point, X_0
 - (normally) converges on the nearest root
- See whiteboard for use
- Found root can be chaotic in the presence of multiple roots
- You are going to investigate and plot this for your last weekly assessment