
3.3 more on the general solution of Schroedinger equa-

tion

The fact that wavefunctions are orthogonal means any shape can be written
as a sum over the wavefunctions - think of Fourier series, where any function
could be written as a sum of sinusoids of different frequency. So we can
have any arbitrary shaped wavefunction, and break it up into a sum of the
eigenfunctions

Ψ(x, t = 0) = ψ(x) = c1ψ1 + c2ψ2 + . . .

subject to the normalisation condition that |c1|2 + |c2|2 + . . . = 1
The mean value of energy which we measure is then

< E >=
∫

ψ∗Ĥψ =
∫

(
∑

n′

(cn′ψn′)∗
∑

n

Encnψndx

=
∑

n′

∑

n

∫

c∗n′ψ∗

n′Encnψndx

but wavefunctions are orthogonal so

=
∑

n′

∑

n

c∗n′Encnδn′n

=
∑

n

c∗nEncn =
∑

n

|cn|2En

so the answer is the weighted sum of each indivudual eigenvalue energy, where
the weight is given by the square of the individual eigenvector normalisation.
But we also know that we can only measure a value of the energy which is
one of the allowed states - so we can only measure a value En. in which
case, the only way to get the average value of < E > derived above is if the
probability of finding the system in state n is given by |cn|2.

4 The linear harmonic oscillator

This has a potential V (x) = 1

2
κx2. This can be used to approximately

describe any arbitrary continuuos potential W (x) in the vicinity of a stable
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equilibrium position (minimum in V (x)). We can see this explicitally by
expaning W (x) as a taylor series about its minimum at x = a

W (x) ≈W (a) + (x− a)
dW

dx
+

1

2
(x− a)2

d2W

dx2
+ ...

since W has a minimum at x = a then dW/dx = 0 at x = a so this

W (x) ≈W (a) +
1

2
(x− a)2

d2W

dx2

so now choose x = a as the origin of the coordinates, and W (a) as the origin
of the energy scale and we get a first approximation

W (x) =
1

2
κx2 κ =

d2W

dx2

so the schroedinger equation is

−h̄2

2m

d2ψ

dx2
+

1

2
κx2ψ = Eψ

d2ψ

dx2
− m

h̄2
κx2ψ = −2m

h̄2
Eψ

d2ψ

dx2
+ (

2mE

h̄2
− m

h̄2
κx2)ψ = 0

let ζ = αx ie let x = ζ/α. in other words we want to used a scaled variable
instead of x

d2ψ

dζ2

(dζ

dx

)2

+ (
2mE

h̄2
− mκ

h̄2α2
ζ2)ψ

d2ψ

dζ2
+ (

2mE

h̄2α2
− mκ

h̄2α4
ζ2)ψ

let α4 = mκ
h̄2 then

d2ψ

dζ2
+ (

2E

h̄

√

m

κ
− ζ2)ψ

but for classical oscillators ω =
√

κ/m so

d2ψ

dζ2
+

(2E

h̄ω
− ζ2

)

ψ
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let λ = 2E
h̄ω

and then we have the much neater looking equation

d2ψ

dζ2
+ (λ− ζ2)ψ = 0

Its still not in any way easy to solve, but we can bludgeon it into submis-
sion! its separable as ψλ(ζ) = Hn(ζ)e−ζ2/2 where Hn(ζ) are a set of special
functions called Hermite polynomials which satisfy the differential equation

d2Hn

dζ2
− 2ζ

dHn

dζ
+ 2nHn = 0

called Hermites equation which are given by

Hn(ζ) = (−1)neζ2 dne−ζ2

dζn
and λ = 2n+ 1

so
H0(ζ) = (−1)01eζ2

e−ζ2

= 1

H1(ζ) = (−1)eζ2 de−ζ2

dζ
= −1.eζ2

.− 2ζe−ζ2

= 2ζ

well, that was tedious enough, and it only gets worse with higher orders
but there is a simpler way to generate these terms as they also satisfy the
recursion relation

Hn+2(ζ) − 2ζHn+1(ζ) + 2(n + 1)Hn(ζ) = 0

so then we have
H2(ζ) = ... = 4ζ2 − 2

H3(ζ) = ... = 8ζ3 − 12ζ

H4(ζ) = ... = 16ζ4 − 48ζ3 + 12

So now all we need to do is normalise them and we are good to go.
∫

ψ∗(ζ)ψ(ζ)dζ =
∫

e−ζ2/2Hn(ζ)e−ζ2/2Hn(ζ)dζ =
∫

e−ζ2

H2

n(ζ)dζ = 2nn!
√
π

where we just looked up the final result. so our normalised wavefunction is

ψ(ζ) =
( 1√

π2nn!

)1/2

e−ζ2/2Hn(ζ)
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and transforming back to our original variables where ζ = αx so dζ = αdx
we have (at last!)

∫

ψ∗(ζ)ψ(ζ)dζ = 1 =
∫

ψ∗(x)ψ(x)αdx

so we (finally!) get

ψn(x) =
( α√

π2nn!

)1/2

e−α2x2/2Hn(αx) where α2 =
mω

h̄
and λ =

2E

h̄ω
= 2n+1 and ω2 =

κ

m

so now we can plot them and understand their properties.
1) n runs from 0 rather than 1. This is the lowest energy state. The system
has a zero point energy which is NOT zero due to the Jeisenburg uncertainty
principle ∆x∆p ≥ h̄/2. The system cannot sit motionless at the bottom of its
potential well, for then its position and momentum would both be completely
determined to arbitrarily great precision. Therefore, the lowest-energy state
(the ground state) of the system must have a distribution in position and
momentum that satisfies the uncertainty principle, which implies its energy
must be greater than the minimum of the potential well
2) Even n gives symmetric wavefunctions (like odd n in the square well)
3) Odd n gives antisymmetric wavefunctions (like even n in the square well)
they are quite similar in shape to the finite square well potential wavefunc-
tions
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