
3.13 Summary: Tensor derivatives

Absolute derivative of a contravariant tensor over some path
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gives a tensor field of same type (contravariant first order) in this case. The
first bit takes into account both real physical changes in λa AND the way
the curvature of the space can swing the vector while the second one takes
out the swinging the vector from the curvature of space alone. So if there
is no physical change then Dλa/ds = 0 and the vector is simply parallelly
transported. Absolute derivative obeys all the normal rules for derivatives
so D(λa + kµa)/ds = D(λa)/ds + kD(µa)/ds (linear) and D(λaµa)/ds =
µaD(λa)/ds + λaD(µa)/ds (Leibniz’ rule).

Absolute derivative of a scalar

There is no space swing with a simple number, φ. so Dφ/ds = dφ/ds

Absolute derivative of covariant tensors

Dφ/ds = dφ/ds so let φ = λaµa then
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do some index manipulation and get
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Absolute derivative of higher order tensors

For example, to get the absolute derivative of a mixed tensor τ a
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Covariant derivative
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rules are as above, so for a second order contravariant tensor we have
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to find covarient derivative, again we use the fact that a scalar has no
space swing so the covariant derivative is the same as partial derivative φ;c =
∂cφ/, while we can write φ = λaµa so
φ;c = ∂cφ/ = (λaµa);c = (λa
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we can can do higher order covariant derivatives similarly
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Covariant differention forms a tensor field of 1 higher covariant order than
the original tensor field.

Covariant derivative of the metric

In getting the Christoffel symbols (section 3.4) in terms of the metric we
had
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rearrange this to get
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but this is the definition of the covariant derivative of a second order covarient
tensor. so gab;c = 0, and we can similarly get that gab

;c
= 0. This means

that index raising and lowering can be swapped in and out of covariant
differention. Ra = gabRb. Then Ra
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= (gabRb);c = gab

;c
Rb + gabRb;c = gabRb;c
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