
Plank got around this by suggesting that the electrons in the walls of the
box vibrating at frequency f = !/(2⇡) can only do this in quantised units
of E = nhf and we know from thermodynamics that the population at any
energy level is N(E) = Ce�E/kT = Ce�nhf/kT . so then the average energy is
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so then I(�) /< E > /�4 so
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�4(ehf/kT � 1)
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hc
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Fit to the data and get a fabulous fit!! and the value of h !!
fundamentally, what it does is reduce the number of the short wavelength

states as e�nhf/kT is zero for all but n = 0 for hf � kT
so this really highlights that electron energies are quantised - in atoms

and in continuum states.

4 Quantum mechanics

we need a better theoretical framework for handling wave particle duality.
We need an equation which can describe the wavelike properties of particles
and the particle properties of waves
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4.1 wave equations
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@t2

a solution for sinusoidal waves travelling from left to right is

y(x, t) = A cos(kx� !t) + B sin(kx� !t)

where k = 2⇡/� (wave number) and ! = 2⇡f (angular frequency) and A,B
determine the amplitude and phase of the wave

you can take the second partial derivatives w.r.t. x and t and show that
this does indeed statisfy the wave equation for waves of velocity v = !/k,
which means that v = 2⇡f�/(2⇡) = f�

so now we need a version of the wave equation which can describe parti-
cles!

for particles, we have the de Broglie relation p = h/� = hk/(2⇡) = ~k/.
We know also that E = hf (from blackbody radiation) for particles. so then

E = hf = (h/2⇡)(2⇡f) = ~!
but we also know that E = 1/2mv2 = p2/(2m) = ~2k2/(2m) so our

relation now between ! and � is quite di↵erent to that for waves on a string.
A free particle has E = ~! = ~2k2/(2m)

lets assume a sinusoidal wave

 (x, t) = A cos(kx� !t) + B sin(kx� !t)

we want E = ~! = ~2k2/(2m). lets do the last term first. we can get k2

by the second derivative

@2 (x, t)

@x2
=

@

@x
[�Ak sin(kx� !t) + Bk cos(kx� !t)]

= �Ak2 cos(kx� !t)� Bk2 sin(kx� !t) = �k2 (x, t)

so we could easily justify something like

E (x, t) = � ~2
2m

@2 (x, t)

@x2
= � ~2

2m
(�k2 (x, t)) =

~2k2

2m
 (x, t)

But the time bit is very di↵erent - we now want E = ~! so we can get
there with only a single derivative

2



@ (x, t)

@t
= ![A sin(kx� !t)� B cos(kx� !t)]

what we would really like for the term in square brackets to equal C !
so if this were true then

[A sin(kx� !t)� B cos(kx� !t)] = C[A cos(kx� !t) + B sin(kx� !t)]

equating coe�cients of sine we get A = CB, while for cosine its �B = CA.
Divide and get �A/B = B/A i.e. B2 = �A2 and B = ±iA. Take the +ve
root. and firstly our electron wave is COMPLEX

 = A[cos(kx� !t) + i sin(kx� !t)] = Aei(kx�!t)

Secondly, we get C = �B/A = �i so @ /@t = �iE/~ . Multiply both
sides by i~ and get i~@ /@t = E . We can now put everything together
and our wave equation FOR A FREE PARTICLE MOVING IN ONE DI-
MENSION is

�~2
2m

@2 2

@x2
= i~@ 

@t
= E 

But we got here by thinking about the energy of a free particle, which is
all kinetic. If instead we have a potential then the energy is both kinetic and
potential so

E = ~! = ~2k2/(2m) + U . We made the free particle wave into a di↵er-
ential equation using

E = ~! = ~2k2/(2m) 

so now we can do this for the more general case where there is a potential as
well

E = ~! = (~2k2/(2m) + U) 

�~2
2m

@2 2

@x2
+ U = i~@ 

@t
= E 

This is the time dependent Schroedinger equation in 1 dimension.
it is linear and homogeneous so if  1 and  2 are two di↵erent solutions

of the Schroedinger equation, then their linear sum  = c1 1 + c2 2 is also
a solution.

It is also first order in the time derivitive, with only @/@t rather than
the @2/@t2 of the classical wave equation. For classical waves we need both
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the wave function  and its first derivative @ /@t in order to determine its
behaviour as a function of time. Here, we only need the wave function at
some time t0 = 0 in order to completely specify the subsequent behaviour of
the system.
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