Plank got around this by suggesting that the electrons in the walls of the box vibrating at frequency $f=\omega /(2 \pi)$ can only do this in quantised units of $E=n h f$ and we know from thermodynamics that the population at any energy level is $N(E)=C e^{-E / k T}=C e^{-n h f / k T}$. so then the average energy is

$$
\begin{gathered}
<E>=\frac{\int N(E) E d E}{\int N(E) d E} \\
=\frac{\Sigma_{n} n h f e^{-n h f / k T}}{\Sigma_{n} e^{-n h f / k T}} \\
\approx \frac{h f e^{-h f / k T}+2 h f e^{-2 h f / k T}+3 h f e^{-3 h f / k T}+4 h f e^{-4 h f / k T} \ldots}{e^{-h f / k T}+e^{-2 h f / k T}+e^{-3 h f / k T}+e^{-4 h f / k T} \ldots} \\
=\frac{h f x\left(1+2 x+3 x^{2} \cdots\right.}{x+x^{2}+x^{3} \ldots}=\frac{h f x(1-x)^{-2}}{(1-x)^{-1}} \\
=\frac{h f e^{-h f / k t}}{1-e^{-h f / k T}}=\frac{h f}{e^{h f / k T}-1}
\end{gathered}
$$

so then $I(\lambda) \propto<E>/ \lambda^{4}$ so

$$
\propto \frac{h f}{\lambda^{4}\left(e^{h f / k T}-1\right)}=\frac{h c}{\lambda^{5}\left(e^{h f / k T}-1\right)}
$$

Fit to the data and get a fabulous fit!! and the value of $h!!$
fundamentally, what it does is reduce the number of the short wavelength states as $e^{-n h f / k T}$ is zero for all but $n=0$ for $h f \gg k T$
so this really highlights that electron energies are quantised - in atoms and in continuum states.

4 Quantum mechanics

we need a better theoretical framework for handling wave particle duality. We need an equation which can describe the wavelike properties of particles and the particle properties of waves

4.1 wave equations

a solution for sinusoidal waves travelling from left to right is

$$
y(x, t)=A \cos (k x-\omega t)+B \sin (k x-\omega t)
$$

where $k=2 \pi / \lambda$ (wave number) and $\omega=2 \pi f$ (angular frequency) and A, B determine the amplitude and phase of the wave
you can take the second partial derivatives w.r.t. x and t and show that this does indeed statisfy the wave equation for waves of velocity $v=\omega / k$, which means that $v=2 \pi f \lambda /(2 \pi)=f \lambda$
so now we need a version of the wave equation which can describe particles!
for particles, we have the de Broglie relation $p=h / \lambda=h k /(2 \pi)=\hbar k /$. We know also that $E=h f$ (from blackbody radiation) for particles. so then $E=h f=(h / 2 \pi)(2 \pi f)=\hbar \omega$
but we also know that $E=1 / 2 m v^{2}=p^{2} /(2 m)=\hbar^{2} k^{2} /(2 m)$ so our relation now between ω and λ is quite different to that for waves on a string. A free particle has $E=\hbar \omega=\hbar^{2} k^{2} /(2 m)$
lets assume a sinusoidal wave

$$
\Psi(x, t)=A \cos (k x-\omega t)+B \sin (k x-\omega t)
$$

we want $E=\hbar \omega=\hbar^{2} k^{2} /(2 m)$. lets do the last term first. we can get k^{2} by the second derivative

$$
\begin{aligned}
& \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=\frac{\partial}{\partial x}[-A k \sin (k x-\omega t)+B k \cos (k x-\omega t)] \\
& =-A k^{2} \cos (k x-\omega t)-B k^{2} \sin (k x-\omega t)=-k^{2} \Psi(x, t)
\end{aligned}
$$

so we could easily justify something like

$$
E \Psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=-\frac{\hbar^{2}}{2 m}\left(-k^{2} \Psi(x, t)\right)=\frac{\hbar^{2} k^{2}}{2 m} \Psi(x, t)
$$

But the time bit is very different - we now want $E=\hbar \omega$ so we can get there with only a single derivative

$$
\frac{\partial \Psi(x, t)}{\partial t}=\omega[A \sin (k x-\omega t)-B \cos (k x-\omega t)]
$$

what we would really like for the term in square brackets to equal $C \Psi$! so if this were true then

$$
[A \sin (k x-\omega t)-B \cos (k x-\omega t)]=C[A \cos (k x-\omega t)+B \sin (k x-\omega t)]
$$

equating coefficients of sine we get $A=C B$, while for cosine its $-B=C A$. Divide and get $-A / B=B / A$ i.e. $B^{2}=-A^{2}$ and $B= \pm i A$. Take the + ve root. and firstly our electron wave is COMPLEX

$$
\Psi=A[\cos (k x-\omega t)+i \sin (k x-\omega t)]=A e^{i(k x-\omega t)}
$$

Secondly, we get $C=-B / A=-i$ so $\partial \Psi / \partial t=-i E / \hbar \Psi$. Multiply both sides by $i \hbar$ and get $i \hbar \partial \Psi / \partial t=E \Psi$. We can now put everything together and our wave equation FOR A FREE PARTICLE MOVING IN ONE DIMENSION is

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{2}}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t}=E \Psi
$$

But we got here by thinking about the energy of a free particle, which is all kinetic. If instead we have a potential then the energy is both kinetic and potential so
$E=\hbar \omega=\hbar^{2} k^{2} /(2 m)+U$. We made the free particle wave into a differential equation using

$$
E \Psi=\hbar \omega \Psi=\hbar^{2} k^{2} /(2 m) \Psi
$$

so now we can do this for the more general case where there is a potential as well

$$
\begin{aligned}
& E \Psi=\hbar \omega \Psi=\left(\hbar^{2} k^{2} /(2 m)+U\right) \Psi \\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{2}}{\partial x^{2}}+U \Psi=i \hbar \frac{\partial \Psi}{\partial t}=E \Psi
\end{aligned}
$$

This is the time dependent Schroedinger equation in 1 dimension.
it is linear and homogeneous so if Ψ_{1} and Ψ_{2} are two different solutions of the Schroedinger equation, then their linear sum $\Psi=c_{1} \Psi_{1}+c_{2} \Psi_{2}$ is also a solution.

It is also first order in the time derivitive, with only $\partial / \partial t$ rather than the $\partial^{2} / \partial t^{2}$ of the classical wave equation. For classical waves we need both
the wave function Ψ and its first derivative $\partial \Psi / \partial t$ in order to determine its behaviour as a function of time. Here, we only need the wave function at some time $t_{0}=0$ in order to completely specify the subsequent behaviour of the system.

