
4.2 Interpretation of  

What can we do with a wave function? what does it tell us? The fact that
we needed to use complex numbers in our justification for the Schroedinger
equation shows immediately that we should not attempt to give wavefunc-
tions a physical existence in the same way as water waves have a physical
existance. complex quantities cannot be measuered by any actual physical
instrument. so we don’t have to ask the questions what is waving and what
is it waving in. And its questions like these that led to the aether in electro-
magnetism! but because our wave function here can be complex we are not
tempted to make the same mistake again. wavefunctions are computational
devices which have significance only in the context of the Schroedinger the-
ory of which they are a part (this is a cop out, which we will look at in more
detail in the final lecture!)

The wave function contains all the information which the uncertainty
principle allows us to know. What is this information?

Going back to the double slit experiment, but turn down the intensity
of the electon source so that only one electron comes through at a time.
we can see the single hits on the screen where each electron lands (showing
that individual electrons really are going through the slits). But after a while,
when many ’single’ particles have built up a pattern, we get the characteristic
pattern of interference. Interference does not occur between electrons, but is
a property of a single electron.

One single measurement does not have a predictable result - the electron
hit can be anywhere in the pattern. only when we consider many identical
systems do we get the full pattern. This suggests that for an individual
particle the process is of a statistical nature, so it is telling us something
about the probability that the particle will hit the screen at a certain point.

Since our wavefunction is complex, and probabilities must be real, this
suggests that we associate a probability / | (x, t)|2. This would be similar
to classical waves where the intensity of a wave I / Amplitude2. Then the
probability of finding a particle between x and x+dx is

P (x, t)dx / | (x, t)|2dx =  ⇤(x, t) (x, t)dx

where the position probability distribution function or probability density
|P (x, t)|2 has units 1/length and the wavefunction (x, t) has units 1/(length)1/2.
This is always real even when our wavefunction is imaginary. Suppose
 = a+ ib where a, b are real. Then  ⇤ = (a� ib)(a+ ib) = a2 + b2.
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Thus the interpretation of the wavefunction is a statistical one. we talk
about the wavefunction of an individual particle but it is more useful to think
about it as describing the behaviour expected from an ensemble of identical
systems.

If we are interpreting | (x, t)|2 as relating to probability of detection of
the particle, then this means we have a normalisation condition since there
is unity probability that the particle is SOMEWHERE i.e. if we integrate
over all space

R +1
�1 | (x, t)|2dx = 1

So, lets go into this with our 1D Schrodinger equation for a free particle
 (x, t) = Aei(kx�!t). Then
Z +1

�1
 ⇤(x, t) (x, t)dx = A2

Z +1

�1
e�i(kx�!t)ei(kx�!t)dx = A2

Z +1

�1
dx = 1

Thats not a good start. Its because a plane wave along the x axis is
completely delocalised - there is constant probability to find it anywhere
along the x-axis. Our plane wave has definite momentum p = ~k in the
x-direction so �p = 0 hence �x is 1 because of the Heisenburg uncertainty
principle.

In practice we’d confine it by the experiment to a box of length L >> �
(e.g. the size of the room!) so

A2

Z L

0

e�i(kx�!t)ei(kx�!t)dx = A2L = 1

so then A⇤A = 1/L so we are free to choose this to be any (complex) number
where A2 = 1/L eg A = 1/

p
L or A = �1/

p
L or A = i/

p
L or A = �i/

p
L

or.... so pick the one which makes life easy and go for A = 1/
p
L. we know

that we don’t have a physical meaning for the wavefunction itself, only its
square, so this phase doesn’t matter.

so our normalised wavefunction is  (x, t) = 1/
p
Lei(kx�!t). The proba-

bility of finding it in any section from x to x + dx is  ⇤(x, t) (x, t)dx and
 ⇤(x, t) (x, t)dx = dx/L so there is equal probability of finding a particle
with this wavefunction anywhere in the box of size L

4.3 time independent Schroedinger equation

If U(x, t) = U(x) i.e. the potential is independent of time then this simplifies
as the wavefunction is separable  (x, t) =  (x)T (t) e.g the free particle
solution is  (x, t) = Aei(kx�!t) = Aeikxe�i!t =  (x)e�iEt/~
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Put  (x, t) =  (x)T (t) into the equation and:

�~2
2m

@2[ (x)T (t)]

@x2
+ U(x) (x)T (t) = i~@[ (x)T (t)]

@t
= E (x)T (t)

�~2
2m

T (t)
d2 

dx2
+ U(x) (x)T (t) = i~ (x)dT

dt
E (x)T (t)

Divide by  (x)T (t)

�~2
2m

1

 (x)

d2 (x)

dx2
+ U(x) = i~ 1

T (t)

dT

dt
= E

The LHS is a function only of x, while the RHS is a function only of t. the
only way these can be equal to each other is if NEITHER is a function of x
or t i.e. if this is equal to a constant. This separation constant is E so

E = i~ 1

T (t)

dT (t)

dt

E

i~dt = �iE/~dt = dT (t)/T (t)

cf the standard derivative d(ect)/dt = cect so T (t) = e�iEt/~ on the other side
we have

E =
�~2
2m

1

 (x)

d2 (x)

dx2
+ U(x)

�~2
2m

d2 (x)

dx2
+ U(x) (x) = E (x)

The wave function  (x, t) for a state of definite energy E is the product
of a time independent wavefunction  (x) and its time dependence which is
e�iEt/~.

States of definite energy are called stationary states because their prob-
ability distribution function is NOT dependent on time

| (x, t)|2 =  ⇤(x, t) (x, t) =  ⇤(x)[e�iEt/~]⇤ (x)e�iEt/~

=  ⇤(x)eiEt/~ (x)e�iEt/~ =  ⇤(x) (x) = | (x)|2
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