
4.4 particle in a 1-D box

consider a particle trapped in a 1-D box by an infinite potential well at x = 0
and x = L. so U(x) = 1 x < 0 and x > L and U(x) = 0 for 0  x  L.

 (x) must be zero where the potential is infinite - there is no probability
to find a particle here!

in the region with U(x) = 0 then we are back to the free particle equation

� ~2
2m

d2 (x)

dx2
= E (x)

when we looked at the solution of this for a particle travelling from left
to right we had  (x) = eikx but this is not zero for x < 0 (our wave went
over all space)

but a wave travelling from right to left is also a solution to the free particle
Schroedinger equation  (x) = e�ikx. And so a more general solution is the
combination of the two:

 (x) = A1eikx + A2e�ikx. And physically this is what we actually ex-
pect from REFLECTION OF A WAVE FROM A BOUNDAY! (see linked
animation!)

so then we have

 (x) = A1(cos kx+ i sin kx) + A2(cos�kx+ i sin�kx)

= A1(cos kx+i sin kx)+A2(cos(kx�i sin kx) = (A1+A2) cos kx+i(A1�A2) sin kx

we need  (0) = 0 so this means A1 + A2 = 0 i.e. A2 = �A1 which is
what we expect for complete reflection. so then

 (x) = 2iA1 sin kx = C sin kx where we simplify by setting C = 2iA1.
but we also need  (L) = 0 so this means that 0 = C sin kL which is

satisfied for kL = n⇡ or k = n⇡/L = 2⇡/� so � = 2L/n for n = 1, 2, 3 . . .

4.4.1 Energy levels

we know En = ~2k2/(2m) = n2⇡2/(2mL2)
each energy level En has its own quantum number n and corresponding

wavefunction  n(x) = C sinn⇡x/L. The energy levels En / n2, unlike the
Bohr atom where En / 1/n2 but thats not really surprising as we used a
square potential rather than a 1/r2 potential and we are in 1D rather than
3D. we’ll need to work up to a real atom, but in the meantime we are going
to build intuition using simpler potentials.
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A particle cannot have zero energy - n=0 does not make sense! the allowed
states are all mixtures of p = ~k and p = �~k - there is an equal mix of +ve
and -ve momentum so the uncertainty on momentum is �p = ~k = ~n⇡/L.
But there is an uncertainty in position - the particle is in the box s0 �x =
L/2. Hence �p�x = ~n⇡/L ⇥ L/2 = ~n⇡ � ~/2 so in fact a particle in a
box does not reach the minimum possible uncertainty.

4.4.2 Examples

a) what is the lowest energy of an electron trapped in a 1D infinite potential
well box of width 5⇥ 10�10 m

En = n2⇡2~2/(2mL2) = 12⇡2(1.06 ⇥ 10�34)2/(2 ⇥ 9.1 ⇥ 10�31 ⇥ (5 ⇥
10�10)2 = 2.44⇥ 10�19 J=1.5eV as 1eV = 1.6⇥ 10�19 J
b) What is the nth energy level in terms of this ground state?

En = n2E2 for n > 1 so En = 1.5n2 eV
c) What is the excitation energy to raise the electron from its ground state
to the third excited state.

ground is n=1. third excited state is n = 4.
E4 � E1 = 1.5(16)� 1.5 = 22.5 eV

4.4.3 Normalisation

the probability to find the electron if we look over all space must be unity
(its somewhere!)

Z +1

�1
| (x)|2dx =

Z 0

�1
| (x)|2dx+

Z L

0

| (x)|2dx+

Z +1

L

| (x)|2dx

=

Z L

0

| (x)|2dx = C2

Z L

0

sin2 n⇡x/Ldx

sin2 ✓ = 1/2[1 � cos(2✓)] so we can evaluate - set y = 2n⇡x/L so dy =
2n⇡dx/L

= C2

Z L

0

1/2[1� cos 2n⇡x/L]dx = C2

Z L

0

1/2dx� C2

Z 2n⇡

0

cos y(L/(2n⇡)dy

= C2L/2� C2(L/(2n⇡)[sin y]2n⇡0 = C2L/2
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hence C2 = L/2 = C⇤C. We can choose C =
p

L/2 for simplicity.

 n(x) =

r
2

L
sin

n⇡x

L
En =

n2⇡2~2
2mL2

n = 1, 2, 3 . . .

4.4.4 Examples

a) sketch the wavefunctions for n = 1, n = 2 and n = 3. sketch the proba-
bility distribution for each one. (see linked figure on web page)

the wavefunction is continuous everywhere. and its derivative is con-
tinuous everywhere EXCEPT at x = 0, L. this is because d2 /dx2 =
2m/~(V � E) so it changes by an infinite amount at x = 0, L so the gra-
dient has a step. This is artificial, as it comes from this infinite potential
approximation. for any finite potential then it won’t happen! we’ll do this
next lecture
b) what is the probability to find the electron within dx of L/2 Prob =
 ⇤ dx = 2/L sin2 n⇡(L/2)/Ldx = 2dx/L sin2 n⇡/2 which ! 2dx/L for n
odd or ! 0 for n even. (see linked figure on web page)

so how does a particle get from left to right for an even state as the proba-
bility is zero at L/2 ?? this is not the right way to think about it - remember,
we don’t ever know a complete trajectory, we only get a probability for where
the particle would be detected if we put an instrument in to measure it!
c) what is the probability to find the electron within 0  x  L/4 in the
n = 1 state? compare this to the classically expected probability?

2/L

Z L/4

0

sin2(⇡x/L)dx = 2/L

Z L/4

0

1

2
[1� cos(2⇡x/L)]dx

= 1/L

Z L/4

0

dx� 2/L

Z L/4

0

cos(2⇡x/L)dx

let y = 2⇡x/L so dy = 2⇡dx/L (remember to change the limits on the
integral)

(1/L)(L/4)� 2/L1/2

Z 2⇡L/(4L)

0

cos yLdy/(2⇡) = 1/4� 1/L(L/2⇡)[sin y]⇡/20

= 1/4� 1/(2⇡) = 0.0908

classically we expect a uniform distribution so 0�L/4 probability is 0.25.
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4.4.5 Finite well

We are really trying to understand atoms - they have a 3D potential well
with shape / �1/r2. So far we have just done an infinite 1D potential... so
lets try to get closer to the physical system we want, but keeping something
very simple. So instead of an infinite potential, lets do a finite potential.

U(x) = U0 for x < 0 and x > L and U(x) = 0 for 0 < x < L.
the electron is bound if its in the well with E < U0 - classically there is

no way over the barrier. but this is quantum mechanics so lets solve it!
Inside the well we have the same conditions as before so we know the

solution is

 (x) = A1e
ikx + A2e

�ikx = (A1 + A2) cos(kx) + i(A1 � A2) sin(kx)

where E = ~2k2/(2m) i.e. k =
p
2mE/~ but now the boundary conditions

are di↵erent since its not an infinite potential then it does not have to go to
zero at x = 0, L! lets find out what it is...

� ~2
2m

d2 

dx2
+ U0 = E 

d2 

dx2
=

2m(U0 � E)

~2  

since U0 > E for the bound particle states we are trying to determine, then
2m(U0 � E)/~2 is a +ve quantity. lets call it 2 so

d2 

dx2
= 2 

if this were -ve we’d have our standard sine/cosine simple harmonic oscillator.
d2 /dx2 = �k2 .but its NOT, its +ve, so instead its solution is a sum of
exponentials  = Cex +De�x.

 must be finite as  2 is a probability distribution function! so
x < 0

the term De�x ! 1 as x ! �1 which is unphysical! hence D = 0
x > L

the term Cex ! 1 as x ! 1 which is unphysical! hence C = 0
so there is an exponential tail of  which extends into the classically

forbidden region! solving this in full generality is nasty, here we are just
trying to build physical intuition. we can get some more contraints from
continuity:
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Continuity of  at x = 0
 (0) = Ce0 = C = A cos k0 + B sin k0 = A so C = A
Continuity of  at x = L - a bit more tricky

 (L) = De�L = A cos kL+B sin kL
for odd n then symmetry means that this is the SAME as x = 0 so

A = De�L and D = AeL so  (x) = AeLe�x = Ae�(x�L) which makes a
lot of sense.

for even n its anti-symmetry so its  (x) = �Ae�(x�L)

Continuity of d /dx at x = 0
this must also be continuous which gives a relation between  and k which

sets the allowed energy levels. But its actually mathematically really nasty
and not a simple analytic formula like the infinite potential well!
comparison of infinite and finite square well potentials

its clear that we have something like the infinite well, but with exponential
tails which can extend into the classically forbidden regime which has U > E.
The fact that the wavefunction extends outside of the well means that � is
bigger for any given n, so the energy shifts down compared to the infinite
well.

The finite well depth also means that there are only a finite number of
bound states, instead of the infinite number in the infinite well. this becomes
very obvious when U0 is only a few times larger than the ground state of the
infinite square well E1,1 = ⇡2~2/(2mL2)

e.g. if U0 = 10.13E1,infty then E1 = 0.69E1,1 and there are 4 bound
states.

e.g. if instead U0 = 2.52E1,1 then E1 = 0.5E1,1 and there are only 2
bound states.

e.g. in the limit where U0 ⌧ E1,1 then there is only one single bound
state with E1 = 0.68U0

(see the linked animation)
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