
4.7 review of wavefunctions

back on our quest to understand atoms! we have now built up intuition for
both bound and free electrons - these have quite di↵erent properties.

solve the time independent Schroedinger equation for E�U0 > 0 (allowed)
and we get solutions of the form

d2 

dx2
= �k2 k =

p
2m(E � U0)

~  = Aeikx +B�ikx

i.e. the solutions are oscillatory - sines and cosines. and the wavelength
� = 2⇡/k increases as E � U0 decreases i.e. as more of the energy goes to
PE rather than KE.

solve the time independent Schroedinger equation for E � U0 < 0 (for-
bidden) and we get solutions of the form

d2 

dx2
= ↵2 ↵ =

p
2m(U0 � E)

~  = Ae↵x +B�↵x

i.e. the solutions are exponentials!
if the particle is bound, so that the potential changes from allowed to

forbidden with the particle inside, then the oscillatory part of the wavefunc-
tion (incident eikx and reflected e�ikx) sets up an interference pattern which
sets up solutions which are a series of standing waves. these are the allowed
states we are looking for

whereas where a particle is not contained on each side by a potential then
we have travelling waves, though we still have reflection and transmission
when the potential changes.

4.7.1 Example: harmonic oscillator

The simple harmonic oscillator gives us a simple potential which ! 1 at
x ! 1 which is smoothly varying.

U(x) = 1/2k0x2 as in a harmonic oscillator (calling it k0 so we don’t get
confused between oscillator constant and wavenumber k).

we can now intuitively sketch the wavefunctions for this - the lowest
energy state will have the smallest classical extent, and a single peak in the
centre with exponetially decaying tails into the ’forbidden’ region
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� ~2
2m

d2 

dx2
+

1

2
k0x2 = E 

We can sketch the ground state - and in fact (after a lot of maths) we get
that its a gaussian!  (x) = Ce�a2x2/2. Lets prove this, and find out what
the energy is. so we put it in Schroedinger

� ~2
2m

d2 

dx2
+

1

2
k0x2 = E 

d2 

dx2
=

2m

~2 (
1

2
k0x2 � E) 

LHS d /dx = C(du/dx)deu/du where u = �1
2a

2x2 so du/dx = �1
2a

22x =

�a2x and d /dx = C(�a2x)e�a2x2/2

d2 

dx2
= C

d

dx
(�a2xe�a2x2/2) = Ce�a2x2/2[�a2 � a2x(�a2x)]

= C(a4x2 � a2)e�a2x2/2

RHS = C 2m
~2 (

1
2k

0x2 � E)e�a2x2

equate coe�cients of e�a2x2
and we get a2 = 2mE/~2 so E = ~2a2/(2m)

equate coe�cients of x2e�a2x2
and we get 1

2k
0 = a4~2/2m so a2 =

p
k0m/~

hence energy E = a2~2/(2m) =
p
k0m~2/(2m~) = 1

2~
p

k0/m = 1
2~!

where ! =
p

k0/m is the classical result for the oscillation.
We saw when we looked at blackbody radiation that it worked if the

electrons in the metal walls were excited into SHM by the EM wave and had
energies which were quantised E = nhf = n~!

so we might expect that En = Emin + n~! where n � 1 (we can do a
LOT of maths to show that this is true!)

so we can COMBINE from n=0 (ground state) and get
En = 1

2~! + n~! = (n+ 1
2)~!

and we can sketch the wavefunctions corresponding to each one - see
linked animation

The minimum energy of a classical SHM is zero - particle is at rest at the
equilibrium position. this is not possible in quantum mechanics because we
cannot be EXACTLY at x = 0, there is always some uncertainty �x�p �
~/2, and as the particle is not at x = 0 it must have some energy.

we can set KE = PE and classically the particle will go between x = A
to 0 to �A with energy all as potential at x = A and all as kinetic at x = 0.

2



1

2
k0A2 =

1

2
~! =

p2

2m

so A2 = ~!/k0 = ~/
p
k0m and p2 = m~! = ~

p
k0m

so let �x ⇠ A/
p
2 and �p ⇠ p/

p
2 where the factors of

p
2 come from

looking at the rms. then we get

�x0�p =
⇣ ~p

2k0m

~
p
k0m

2

⌘1/2

= ~/2

and this is the absolute minimum according to the heisenburg uncertainty
principle.

5 Schroedinger in 3 dimensions - cartesian

coordinates

Atoms are in 3 dimensional space, not 1 dimensional potentials! so we need
to extend our treatment. we got to the 1D Schroedinger by saying E =
KE = ~2k2/2m = p2x/2m for a free particle. now in 3D we could say for a
free particle

E = p2/2m = p2x/2m+ p2y/2m+ p2z/2m = ~2(k2
x + k2

y + k2
z)/2m

so then we have the 3D time dependent Schroedinger equation

i~@ 
@t

= � ~2
2m

⇣@2 
@x2

+
@2 

@y2
+
@2 

@z2

⌘
+ V (x, y, z, t) = E 

where  =  (x, y, z, t).
and we can use the same separation of variables techniques to show that

as long as the potential is NOT dependent on time then the equation is
separable in time and space so  (x, y, z, t) =  (x, y, z)e�iEt/~ where the time
independent equation to solve is

�~2
2m

⇣@2 
@x2

+
@2 

@y2
+
@2 

@z2

⌘
+ V (x, y, z) = E (x, y, z)

This is separable into  (x, y, z) = X(x)Y (y)Z(z) if V (x, y, z) = Vx(x) +
Vy(y) + Vz(z).
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�~2
2m

⇣
Y Z

@2X

@x2
+XZ

@2Y

@y2
+XY

@2Z

@z2

⌘
+ (Vx + Vy + Vz)XY Z = EXY Z

divide by XY Z to get

⇣ �~2
2mX

@2X

@x2
+ Vx

⌘
+
⇣
� ~2
2mY

@2Y

@y2
+ Vy

⌘
+
⇣
� ~2
2mZ

@2Z

@z2
+ Vz

⌘
= E

these three groups are each dependent only on x, y and z respectively so
NONE of them can depend on x,y or z - they must be constants which we’ll
call Ex, Ey, Ez. Then we get the three equations

�~2
2m

d2X(x)

dx2
+ VxX(x) = ExX(x)

�~2
2m

d2Y (y)

dy2
+ VyY (y) = EyY (y)

�~2
2m

d2Z(z)

dz2
+ VzZ(z) = EzZ(z)

and Ex + Ey + Ez = E
so now we need 3 quantum numbers, one in each direction, rather

than the 1 we needed in the 1D case.
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