
6 Schroedinger in 3D - spherical polar coor-

dinates

so we really need to put the proper potential in. but 1/R = 1/(x2+y2+z2)1/2

which is NOT separable as V (x) + v(y) + V (z). we cannot use cartesian
coordinates - and in fact we would expect to be using spherical polars as
they follow the symmetry of the potential.

In spherical polars we have r =
p

x2 + y2 + z2, cos ✓ = z/r and tan� =
y/x. and then our potential U(r, ✓,�) = U(r). Then the wavefunction can be
separated into  (r, ✓,�) = R(r)⇥(✓)�(�) similarly to the cartesian problem
above where we had  (x, y, z) = X(x)Y (y)Z(z). After a LOT of maths (that
you will tangle with in 2nd year) we get three di↵erential equations:

�~2
2µr2

d

dr

⇣
r2
dR

dr

⌘
+
�~2l(l + 1)

2µr2
+ U(r)

⌘
R(r) = ER(r)

1

sin ✓

d

d✓

⇣
sin ✓

d⇥(✓)

d✓

⌘
+
⇣
l(l + 1)� m2

l

sin2 ✓

⌘
⇥(✓) = 0

d2�

d�2
+m2

l�(�) = 0

where l,ml are quantized constants and we are calling mass µ to dis-
tinguish it from ml. Essentially the boundary conditions produce 3 integer
quantum numbers (one for each direction!) which are n, l, and ml.

For any radial potential then we can get these wavefunctions - and only
the first equation changes with changing the shape of the potential. it is
this equation which sets the third quantum number n, while l,ml are talk-
ing about the angular dependence which is set by the assumption that the
potential is radial.

For hydrogen we need to solve these equations (horrible maths) for the
specific potential U(r) = �e2/(4⇡✏0r).

When we do this (second year!) we find that the energy En,l,ml
is actually

only a function of n

En = � µe4

(4⇡✏0)22~2n2
= �13.6

n2
eV
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so it reproduces what we see in Hydrogen!! which is what the Bohr atom did
for us but this time we’re getting here via a wave equation.

n is called the principle quantum number. Ground state is n = 1

l is called the orbital quantum number and runs from 0, 1 . . . n� 1
This appears alongside the potential in the radial Schroedinger equation
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in classical mechanics, we’d associate cetripetal force F = µv2/r - but
angular momentum is L = µvr and this is conserved. so F = L2/(µr3). this
is associated with a potential as U =

R
Fdr so the conservation of angular

momentum means that there is an additional potential term U = L2/(2µr2)
this suggests that we should associate L2 = ~2l(l+ 1), ie that l is talking

about angular momentum. This is quantised as l is an integer - which just
comes out of the maths now rather than being Bohrs assumptions. and in
fact this di↵ers from Bohr as the magnitude of the angular momentum is
|L| = ~

p
l(l + 1) whereas Bohr has |L| = n~

ml is called the magnetic quantum number and runs from = �l,�l+
1 . . . l � 1, l
ml: magnetic quantum number

total angular momentum L2 = L2
x + L2

y + L2
z and we can know this as its

quantised into a definite value.
But it should also have a direction - which I’m going to talk about in

terms of cartseian coordinates as its easier
~L = Lxi+ Lyj+ Lzk = ~r ⇥ ~p
so in here there will be problems - this is about position and momentum!

and we know from heisenburg that we can’t constrain these to arbitrary
accuracy simultaneously. so we can’t know all the individual components of
~L. But we can know the magnitude of ONE of them along with the total
angular momentum. we pick the projection onto the z axis (as it makes the
maths easier). see the linked picture to visualise this.

6.1 Wavefunctions

The radial wavefunction R(r) is set by BOTH n, l so better to write it as
Rnl(r)
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The angular wavefunctions are ⇥(✓) which depends on l,ml and �(�)
which depends only on ml. The combination Y ml

l = ⇥l,ml
�ml

are called
spherical harmonics and are the same for ANY radially symmetric potential
(eg the 2D harmonic oscillator U = 1

2k
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2K
0r2)

Y 0
0 =

1p
4⇡

Y 0
1 =

⇣ 3

4⇡

⌘1/2

cos ✓

Y ±1
1 = ⌥

⇣ 3

8⇡

⌘1/2

sin ✓e±i�

hence the ground state is  100 = R10Y 0
0 = 1p
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6.2 probability densities

BEWARE THE VOLUME ELEMENT dV = r2 sin ✓drd✓d� 6= drd✓d�
probability of finding the electron within volume element dV is

P (r, ✓,�)dV =  ⇤ dV = |Rnl|2|Y ml
l |2r2 sin ✓drd✓d�

radial probability density distribution - probability to find within dr of r

P (r)dr =

Z ⇡

✓=0

Z 2⇡

�=0

P (r, ✓,�)dV = r2|R|2dr
Z ⇡

✓=0

Z 2⇡

�=0

|Y ml
l |2 sin ✓d✓d� = |Rnl|2r2dr

but both R and  are really nasty maths functions - use wolfram alpha to
visualise the radial probability distribution and see the links from the website
for visualisation of the wavefunctions and probability densities
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6.3 Degeneracies

for each n, the energy level is determined, but there are other quantum
numbers associated with the angle symmetries so there are degeneracies!

so for n=1, we can only have l=0 and ml = 0. single level, non degenerate

n = 2, so l = 0 and ml = 0 AND l = 1 which can have ml = �1, 0, 1 so 4
distinct states all with the SAME ENERGY - degeneracy 4.

n = 3, so l = 0 and ml = 0 AND l = 1 which can have ml = �1, 0, 1
AND l = 2 so ml = �2,�1, 0, 1, 2, so 9 distinct states all with the SAME
ENERGY - degeneracy 9.

6.4 spectroscopic notation

spectra were studied long before quantum mechanics! so the terminology
just has to be learnt!

spectroscopic notation - think chemistry!
l = 0 s states
l = 1 p states
l = 2 d states
l = 3 f states states with same principle quantum number n are in the

same ’shell’
n = 1 called K shell
n = 2 called L shell
n = 3 called M shell
n = 4 called N shell
(at least these are alphabetic!)
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Figure 1:
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