
1 Special Relativity

Lorentz factor

γ =
1√

1− u2/c2
=

1√
1− β2

where β = u/c

Standard frame setup: PRIME IS THE REST FRAME OF THE PARTICLE
WHICH MOVES WITH VELOCITY u

Time dilation t = γt′ and length contraction L = L′/γ

It will do you no harm to learn also the Lorentz transformations

x′ = γ(x− ut) y′ = y z′ = z t′ = γ(t− xu/c2)

and velocity transformations

v′x =
vx − u

1− vxu/c2

Relativistic mechanics: momentum p = γmv, total energy E2 = (pc)2 +
(mc2)2. so for particles E = γmc2 and kinetic energy K = (γ − 1)mc2. For
photons m = 0 so E = pc = hf

2 towards Quantum mechanics: photons

Photons behave as particles as well as waves: Einstein - photoelectric.

E = hf = hc/λ momentum p = hf/c = h/λ

photoelectriceffect K = eV = hf − φ

φ is the work function (characteristic of each element) and electron kinetic
energy K is measured from the stopping potential V .
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3 towards quantum mechanics: particles

Particles behave as waves as well as particles (de Broglie). p = h/λ so
λ = h/p

Heisenburg uncertainty principle for particle waves ∆x∆px ≥ ~/2 as a fun-
damental limit to knowledge.

Bohr atom: electron orbits quantised angular momentum L = n~. Gave
quantised En = −13.6/n2 eV

4 quantum mechanics

Schroedinger: wave equation to do wave-particle duality for matter. 1d, time
dependent, Justified (not derived) from conservation of energy E=KE+PE.

EΨ = ~ωΨ = (~2k2/(2m) + U)Ψ

−~2

2m

∂2Ψ2

∂x2
+ UΨ = i~

∂Ψ

∂t
= EΨ

Ψ(x, t) is the wavefunction. This is NOT a physical observable. Prob-
ability to detect the particle at time t within dx of x is |Ψ(x, t)|2dx =
Ψ(x, t)∗Ψ(x, t)dx.

The wavefunction is separable for time independent potential, Ψ(x, t) =
ψ(x)T (t), where T (t) = e−iEt/~ and ψ(x) is given by the time independent
Schroedinger equation

−~2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x)

1 D infinite potential well. U = 0 for 0 < x < L, U =∞ elsewhere:

d2ψ

dx2
ψ(x) = −k2ψ(x) where k2 = 2mE/~2
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solution is ψ(x) = Aeikx + Be−ikx (A is incident wave left to right, B is re-
flected wave, right to left). Boundary conditions give that these form a stand-
ing wave pattern with ψ(x) =

√
2/L sinnπx/L and En = n2π2~2/(2mL2)

where n = 1 . . ..

single states are stationary (standing waves) Ψ(x, t) = ψ(x)T (t) = ψn(x)e−iEnt/~

so probability within dx of x at time t is

P (x, t)dx = Ψ(x, t)∗Ψ(x, t)dx = ψ∗n(x)eiEnt/~ψn(x)e−iEnt/~dx = ψ∗n(x)ψn(x)dx

Mixtures of different n will oscillate in time!

1 D finite potential: U = 0 for 0 < x < L and U = U0 elsewhere. E < U0

then wavefunction penetrates into the classically forbidden region x > L with
exponetial decay

d2ψ

dx2
ψ(x) = α2ψ(x) where α2 = 2m(U0 − E)/~2

ψ(x) ∝ e−α(x−L) and En = n2π2~2/(2mL2). If the potential barrier stops
after some distance D then there is some probability that the electron is
found on the other side of the barrier. Quantum tunnelling controls nuclear
fusion in the sun, and alpha particle radioactive decays, and. . .

1 D harmomic oscillator U = 1/2k′x2: En = (n+ 1/2)~ω where ω =
√
k′/m

and n = 0 . . .. Zero point energy from Heisenburg!

Schroedinger: wave equation to do wave-particle duality for matter. 3d, time
dependent, cartesian coordinates.

simplify for time independent potential then Ψ(x, y, z, t) = ψ(x, y, z)T (t)
where T (t) = e−iEt/~ as before. and for U(x, y, z) = Ux(x) + Uy(y) + Uz(z)
then it separates further into ψ(x, y, z) = X(x)Y (y)Z(z) and there are three
time independent Schroedinger equations for each of the functions X, Y, Z
and three independent quantum numbers, nx, ny, nz and three independent
energies Ex, Ey, Ez. the total energy E = Ex(nx)+Ey(ny)+Ez(nz) and there
may be multiple different ways to get the same energy (degeneracy), linked
to symmetry

3D infinite potential well (isotropic) 0 < x < L, 0 < y < L, 0 < z < L and get

3



ψ(x, y, z) = ψnx(x)ψny(y)ψnz(z) =
√

8/L3 sinnxπx/L sinnyπy/L sinnzπz/L
and E = π2~2/(2mL2)(n2

x + n2
y + n2

z)

3D harmonic potential (isotropic) U = 1/2k′(x2 + y2 + z2) and E = (nx +
ny + nz + 3/2)~ω

Schroedinger in spherical polars for hydrogen as U(r) 6= Ux(x)+Uy(y)+Uz(z).
but still separable. ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) = R(r)Y (θ, φ). The bound-
ary conditions give 3 quantum numbers, n, l,ml, where n (principle quantum
number) sets the energy levels En = −13.6/n2 eV, l = 0, 1 . . . (n−1) (orbital
angular momentum) and ml = −l . . . l (magnetic quantum number) in inte-
ger steps. The last two quantise angular momentum, with total magnitude
squared L2 = (L2

x + L2
y + L2

z) = l(l + 1)~2 and projection on the z-axis of

Lz = ml~. We can’t know Ly and Lz simultaneously as ~L = ~r × ~p i.e. this
would require that we knew position and momentum simultaneously in all
directions which we cannot do because of Heisenburg. Label orbitals as n
and letter denoting l. l=0:s, 1:p, 2:d, 3:f etc. so 2s etc

The spatial part of the wavefunction is separable into radial wavefunctions
Rnl(r) and angular wavefunctions Y ml

l (θ, φ). The probability of finding an
electron within dr of r and dθ of θ and dφ of φ is |ψ(r, θ, φ)|2dV BUT dV =
r2 sin θdrdθdφ. The probability of finding within dr of r is∫ π

θ=0

∫ 2π

φ=0

|ψ(r, θ, φ)|2r2 sin θdrdθdφ

= r2|Rnl(r)|2dr
∫ π

θ=0

∫ 2π

φ=0

|Y ml
l (θ, φ)|2 sin θdθdφ = r2|Rnl(r)|2dr

Electrons with orbital angular momentum form a current loop, so have a
magnetic moment, so a response to a magnetic field. A magnetic field in the
z-direction acts on the magnetic moment in the z direction and produces a
potential U = µBmlBz. So states with different ml have a different response
to the magnetic field, and their energy levels shift (Zeeman effect). Rather
than looking at energy, we can SEE the effect via a deflection in a magnetic
field with a gradient as Fz = dU/dz. if dBz/dz 6= 0 then we get a force
µBmldBz/dz (Stern Gerlach apparatus)

But states with NO angular momentum also are shifted (anomolous Zeeman
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effect), and show deflections. The deflection is quantised into 2 separate
states. so we infer that electrons have SPIN, an intrinsic angular momentum,
with total S2 = s(s + 1)~2 and Sz = ms~ where ms = −s . . . s in integer
steps. Since we have 2 separate spots, we have 2 separate values of ms so
ms = −1/2, 1/2 and s = 1/2. This is INTRINSIC to all electrons (like
charge).

Pauli exclusion principle - no 2 electrons can be in the same state (works for
all spin 1/2 particles: fermions). So we need separate sets of quantum num-
bers n, l,ml,ms for each electron. this gives a zeroth order approximation for
other elements. take nuclear charge Ze and assume energy levels unchanged
from hydrogen at −13.6Z2/n2 eV and fill up the states. spectroscopic nota-
tion as before, but now with number of electrons in the shell e.g. 1s22s1 for
lithium. Outer electrons see Zeff not entire charge Z as they are shielded by
the inner filled shells (Debye shielding).

5 Quantum mechanics: nuclei

Z is number of protons, N is number of neutrons and A=N+Z is number
of nucleons. Mass is ≈ Au but not quite due to binding energy EB =
(Nmn+Zmp−m)c2 where m is measured mass, and EB/c

2 is called the mass
defect. EB has distinct peaks showing that there is structure to the energy
levels in the nucleus. Nuclear potential is different for neutrons than protons
as protons also feel electrostatic repulsion. But can be approximated by a
3D harmonic oscillator. In which case there are filled shells which have extra
stability (like chemical stability for filled shell atomic orbitals for He, Ne, Ar
etc). Filled shells are for nx = ny = nz = 1 (x2 spin states). so 2 protons is
stable, and 2 neutrons, and both is doubly stable. next is (1,1,2),(1,2,1) and
(2,1,1) so 3 states (x2 spin states) is 6, so total of 8 protons or 8 neutrons
and doubly stable with both.

radioactive decay: α decay - He particles. A
ZN → A−4Z − 2M+4

2He where M
is the element 2 down from N. Need mass of M to be bigger than combined
mass of N and He.

β decay - electrons A
ZN → A

Z+1M + e− where mass of N has to be bigger than
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mass of M, and M is next element UP.
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