
1 Basics of Quantum Mechanics

1.1 Admin

The course is based on the book Quantum Mechanics (2nd edition or new
international edition NOT 1st edition) by Griffiths as its just genius for this
level. There are copies in the library and college libraries, and my online
lecture notes are pretty comprehensive, but it is a nice book to just buy and
read.
The additional book is Quantum Mechanics, B.H. Bransden and C.J. Joachain
(Prentice Hall, 2nd Edition). This is a more formal approach, so useful in
defining the sylabus, but not much fun to read.
The whole point of the course is to do energy levels in Hydrogen, but we’ll
sneak up on it, building up the framework we need to calculate them! The
course necessarily involves a lot of special functions - most of these you will
meet in the maths course at some point. I’m not interested in them, I’m
only really interested in what they tell us about the energy levels, so don’t
panic and think you need to memorise them. I do expect you to be able to
use them once they are given to you though.
I’m more interested in building physical understanding. some of that neces-
sarily comes from mathematical derivations, so there will be a lot of board-
work in this course, but I want to stress what the equations mean, how to
think about them, rather than getting you to memorize derivations!

1.2 The electron wavefunction and Schroedingers equa-

tion: a quick review of L1

The double slit experiment is one of the conceptually most important exper-
iments of quantum mechanics.
The interference pattern when both slits are open means that the electron
also have wavelike properties. The separation of the fringes gives us the
wavelength of the electron waves, and we get the de Broglie relation λ = h/p
where p is momentum. If its a wave then we can describe it as a wave function
Ψ(r, t) - in general can depend on both position and time.
But if its wavy, then we are automatically in trouble. A wave doesn’t have
a well defined position e.g. if Ψ(x) = A cos(kx) has wavelength λ = 2π/k.
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This extends over the entire x axis so how do we define its position?
If we were to add together two waves of different wavelengths we get beats
- and you can see that this starts to localise the total wave. If we add
together enough of them we can get something which starts to look like
it might approximate to a classical mechanics notion of localisation. But
we did this by adding lots of different wavelengths together. and in the
quantum world p = h/λ so we got to a well defined position only by having an
increasingly poorly defined momentum. so we are not getting any close to a
classical mechanics approach where when we have x(t) (plus some boundary
conditions) we automatically get v = dx/dt and p = mv = mdx/dt and
KE = T = mv2/2 = p2/2m. we can get localise x(t) at some time t but
only at the expense of not knowing p very well at all. This is the Heisenburg
Uncertainty principle (better to call it indeterminacy!) ∆x∆p ≥ h̄/2 and it
forms an absolute limit to our knowledge.
This is all very unlike classical mechanics!
Classical waves, waves on a string obeyed a wave equation. If the string is
in the x direction then a transverse wave in the y direction is the solution of
the 1D wave equation:

∂2y(x, t)

∂x2
=

1

v2

∂2y(x, t)

∂t2

a solution is y(x, t) = A cos(kx − ωt) where ω = 2πf and λ = 2π/k. This
is a wave moving in the +ve x direction (left to right) along a string, where
v = λf = ω/k. This is the same velocity irrespective of wavelength, whereas
we know that in the quantum world we have p = mv = h/λ so the speed of
an electron wave depends on its wavelength....
so what we are looking for is neither classical mechanics nor classical waves.
which brings us to ...
Quantum mechanics Suppose our electron is also a wave, described by a
wavefunction Ψ, travelling along the x axis. Then we could try a similar
solution

Ψ(x, t) = A cos(kx − ωt) + B sin(kx − ωt)

We know that its energy E = 1
2
mv2

x + V so for a free particle E = p2
x/2m

(V = 0). In a quantum world we also have E = hf = hω/2π = h̄ω and
p = h/λ = hk/2π = h̄k. Merge these together and get E = h̄ω = p2

x/2m =
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h̄2k2/2m. But we can pretty easily determine k2 as we know that

∂2Ψ(x, t)

∂x2
=

∂

∂x
[−Ak sin(kx − ωt) + Bk cos(kx − ωt)]

= −Ak2 cos(kx − ωt) − Bk2 sin(kx − ωt) = −k2Ψ(x, t) = −2mE

h̄2 Ψ(x, t)

so we could easily justify something like

EΨ(x, t) = − h̄2

2m

∂2Ψ(x, t)

∂x2

so the spatial bit looks a lot like the classical wave equation.
However, the time bit is going to be different from the classical wave equation
as in quantum p = mv = h/λ so the velocity depends on λ. So what happens
w.r.t. time is different. Looking at the waveform you can see that you can
get ω via a single derivative

∂Ψ(x, t)

∂t
= ω[A sin(kx − ωt) − B cos(kx − ωt)]

what we would really like for the term in square brackets to equal CΨ

[A sin(kx − ωt) − B cos(kx − ωt)] = C[A cos(kx − ωt) + B sin(kx − ωt)]

equating coefficients of sine we get A = CB, while for cosine its −B = CA.
Divide and get −A/B = B/A i.e. B2 = −A2 and B = ±iA. Take the +ve
root. and firstly our electron wave is COMPLEX

Ψ = A[cos(kx − ωt) + i sin(kx − ωt)] = Aei(kx−ωt)

Secondly, we get C = −B/A = −i so ∂Ψ/∂t = −iE/h̄Ψ. Multiply both sides
by ih̄ and get ih̄∂Ψ/∂t = EΨ. We can now put everything together and our
wave equation FOR A FREE PARTICLE MOVING IN ONE DIMENSION
is

−h̄2

2m

∂Ψ2

∂x2
= ih̄

∂Ψ

∂t
= EΨ

Since this is just simply saying p2
x/2m = h̄ω = E then we can easily see how

to extend it to put an external Voltage, V (x, t), as total energy is KE+PE
so p2

x/2m + V (x, t) = h̄ω = E

−h̄2

2m

∂Ψ2

∂x2
+ V (x, t)Ψ(x, t) = ih̄

∂Ψ

∂t
= EΨ
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This is the time dependent Schroedinger equation in 1 dimension.
It is linear and homogeneous so the superposition principle holds i.e. if Ψ1

and Ψ2 are two different solutions of the Schroedinger equation, then their
linear sum Ψ = c1Ψ1 + c2Ψ2 is also a solution.
It is also first order in the time derivitive, with only ∂/∂t rather than the
∂2/∂t2 of the classical wave equation. For classical waves we need both the
wave function Ψ and its first derivative ∂Ψ/∂t in order to determine its
behaviour as a function of time. Here, we only need the wave function at
some time t0 = 0 in order to completely specify the subsequent behaviour of
the system.

1.3 Interpretation of Ψ

What can we do with a wave function? what does it tell us? The fact that
we needed to use complex numbers in our justification for the Schroedinger
equation shows immediately that we should not attempt to give wavefunc-
tions a physical existence in the same way as water waves have a physical
existance. complex quantities cannot be measuered by any actual physical
instrument. so we don’t have to ask the questions what is waving and what
is it waving in. And its questions like these that led to the aether in electro-
magnetism! but because our wave function here can be complex we are not
tempted to make the same mistake again. wavefunctions are computational
devices which have significance only in the context of the Schroedinger the-
ory of which they are a part (this is a cop out, which we will look at in more
detail in the final lecture!)
However, the wave function actually contains all in information which the
uncertainty principle allows us to know. What is this information?
Going back to the double slit experiment, but turn down the intensity of
the electon source so that only one electron comes through at a time. we
can see the single hits on the screen where each electron lands (showing that
individual electrons really are going through the slits). But after a while,
when many ’single’ particles have built up a pattern, we get the characteristic
pattern of interference. Interference does not occur between electrons, but is
a property of a single electron.
One single measurement does not have a predictable result - the electron
hit can be anywhere in the pattern. only when we consider many identical
systems do we get the full pattern. This suggests that for an individual
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particle the process is of a statistical nature, so it is telling us something
about the probability that the particle will hit the screen at a certain point.
Since our wavefunction is complex, and probabilities must be real, this sug-
gests that we associate a probability ∝ |Ψ(x, t)|2. This would be similar to
classical waves where the intensity of a wave I ∝ Amplitude2. Then the
probability of finding a particle between x and x+dx is

P (x, t)dx ∝ |Ψ(x, t)|2dx = Ψ∗(x, t)Ψ(x, t)dx

where the position propability density P (x, t) has units 1/length and the
wavefunction Ψ(x, t) has units 1/(length)1/2. This is always real even when
our wavefunction is imaginary. Suppose Ψ = a+ ib where a, b are real. Then
Ψ∗Ψ = (a − ib)(a + ib) = a2 + b2.
Thus the interpretation of the wavefunction is a statistical one. we talk about
the wavefunction of an individual particle but it is more useful to think about
it as describing the behaviour expected from an ensemble of identical systems.

1.4 Normalisation of a wavefunction

For a single particle, the probability to find this anywhere in space should
be unity so this gives us a normalisation

∫

P (x, t)dx =
∫ +∞

−∞

|Ψ(x, t)|2dx = 1

hence if we have some unnormalised function f(x, t), which is a solution of
Schroedinger equation, we can get its normalised version Ψ(x, t) as Ψ(x, t) =
Nf(x, t) where N is some normalisation constant. Then we know that

Ψ(x, t)dx = 1 so
∫

(Nf)∗(Nf)dx = 1

|N |2
∫

f ∗fdx = 1

|N |2 =
1

∫

f ∗fdx
so N =

1
√

∫

f ∗fdx

so in full we have

Ψ(x, t) =
f(x, t)

√

∫ +∞

−∞
|f(x, t)|2dx
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1.4.1 Normalisation for free particle

So, lets go into this with our 1D Schrodinger equation for a free particle
Ψ(x, t) = Aei(kx−ωt). Then

∫ +∞

−∞

Ψ∗(x, t)Ψ(x, t)dx = A2
∫ +∞

−∞

e−i(kx−ωt)ei(kx−ωt)dx = A2
∫ +∞

−∞

dx = ∞

Thats not a good start. Its because a plane wave along the x axis is com-
pletely delocalised - there is constant probability to find it anywhere along
the x-axis. In practice we’d confine it by the experiment to a box of length
L >> λ (e.g. the size of the room!) so

A2
∫ L

0
e−i(kx−ωt)ei(kx−ωt)dx = A2L = 1

so then A∗A = 1/L so we are free to choose this to be any (complex) number
where A2 = 1/L eg A = 1/

√
L or A = −1/

√
L or A = i/

√
L or A = −i/

√
L

or.... so pick the one which makes life easy and go for A = 1/
√

L. we know
that we don’t have a physical meaning for the wavefunction itself, only its
square, so this phase doesn’t matter.
so our normalised wavefunction is Ψ(x, t) = 1/

√
Lei(kx−ωt). The probability

of finding it in any section from a to a + da is then
∫ a+da
a Ψ∗(x, t)Ψ(x, t)dx = 1/L

∫ a+da
a dx = 1/L(a + da − a) = da/L and there

is equal probability of finding a particle with this wavefunction anywhere.
Summary of L1
The Schroedinger equation is just a statement that KE+PE=total
energy. i.e. p2/2m + V = E but all multiplied by the wavefunction
Ψ

−h̄2

2m

∂Ψ2

∂x2
+ V (x, t)Ψ(x, t) = ih̄

∂Ψ

∂t

Ψ is tricky, but Ψ2 has a probabilitic interpretation. Hence we have
to normalise it such that the probability of finding it anywhere in
space is unity (the particle has to be somewhere)
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