
9 More on angular momentum

We saw from Hydrogen that each level n had n2 degenerate levels, n2 states
with different wavefunctions but the same energy. but they actually don’t.
thats becasue we haven’t put in spin yet! then we can have fine structure
from spin-orbit coupling. and relativistic effects also give us fine structure
too. and then there is also hyperfine structure from coupling to the nuclear
spin.

so, lets do spin. in classical mechanics then there are two kinds of angular
momentum, orbital and spin. this division is a bit arbitrary as the two are
really the same thing.

but in quantum mechanics the distinction is fundamental. orbital angu-
lar momentum of the electron about the nucleus is described by spherical
harmonics. but the electron carries anolther angular momentum which has
nothing to do with its position in space so cannot be described by rθφ. in-
tead, an electron has intrinsic angular momentum as well as the extrinsic
orbital angular momentum.

we’re going to describe it similary to the orbital angular momentum though,
so first a quick review of L, and its extension to ladder operators. and then
we will use the same notation to define spin!

9.1 Angular momentum: Smart way!

[Lx, Ly] = ih̄Lz , and likewise [Ly, Lz] = ih̄Lx and [Ly, Lz] = ih̄Lx. These
cannot be measured together.

we also stated (without proof) that [L2, Lx] = [L2, Ly] = [L2, Lz] = 0. so
any ONE of the components of L can be measured together with its total
magnitude. and we normally choose Lz as it has the simplest mathematical
form in spherical polar coordinates.

we solved this the brute force and ignorance way and found L2Ylm = l(l +
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1)h̄2Ylm and LzYlm = mh̄Ylm where m takes integer values from −l . . . l.

But suppose now we didn’t know that. suppose instead we start at the
beginning and know only that we have some operator L with components
Lx, Ly, Lz who obey the commutation relations [Lx, Ly] = ih̄Lz , [Ly, Lz] =
ih̄Lx, [Ly, Lz] = ih̄Lx and [L2, Lz] = 0. This tells us that L2 and Lz share
some common set of eigenvectors fλµ so L2fλµ = λh̄2fλµ and Lzfλµ = µh̄fλµ

9.2 ladder operators

we can also form an operator L± = Lx ± iLy. lets take L+ to be definite.

[L2, L+] = [L2, Lx + iLy] = [L2, Lx] + i[L2, Ly] = 0

so this is something we can measure along with L2, so it shares common
eigenfunctions fλµ too.

[L2, L+]fλµ = L2(L+fλµ) − L+(L2fλµ) = L2(L+fλµ) − λ(L+fλµ) = 0

so L+fλµ is an eigenvector of L2 and its the one with eigenvalue λh̄2.

lets see what happens with Lz.

[Lz, L+] = [Lz , Lx] + i[Lz, Ly] = ih̄Ly + i. − ih̄Lx = h̄Lx + ih̄Ly = h̄L+

so these DON’T have common eigenfunctions. but what does it do?

[Lz, L+]fλµ = h̄L+fλµ

Lz(L+fλµ) − L+(Lzfλµ) = h̄L+fλµ
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Lz(L+fλµ) − L+µh̄fλµ = h̄L+fλµ

Lz(L+fλµ) = L+(µ + 1)h̄fλµ = (µ + 1)h̄(L+fλµ)

so L+fλµ is an eigenfunction of Lz but with an eigenvalue (µ + 1)h̄ not µh̄
which is what we started with. so the operator L+ is a raising operator - we
can raise µ by one each time. L+fλµ = Nfλµ+1

and similarly we have a lowering operator Lz(L−fλµ) = (µ − 1)h̄L−fλµ

so for a given value of λ there is a ladder of states, with each rung of the
ladder separated by one unit of h̄ in Lz. To ascend the ladder we use L+,
to decend we use L−. But this can’t go on forever, there is a top rung -
where L2

z exceeds the total angular momentum L2, where we can’t raise it
any more. so at the top value of µ = t, L+fλt = 0

now, lets do a bit of sleight of hand. If we raise the index and then lower it
again we get

L−L+ = (Lx − iLy)(Lx + iLy) = (L2

x + L2

y − iLyLx + iLxLy)

= L2 − L2

z + i[Lx, Ly] = L2 − L2

z + i.ih̄Lz = L2 − L2

z − h̄Lz

so if we do this on the top rung we know that L+fλt = 0 so we have

L−(L+fλt) = L2fλt − L2

zfλt − h̄Lzfλt = 0

0 = λh̄2fλt − t2h̄2fλt − th̄2fλt

or λ = t(t + 1). so now we can see why we chose L2 eigenvalues to be
l(l+1) rather than some constant λ as doing it this way we explicitly set the
eigenvalue of L2 to set the range we need in the eigenvalues of Lz
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we can do the whole thing again and get that the bottom value of µ = b
where we need to lower the index, and then raise it i.e. L+(L−fλb) = 0 and
then we get λ = b(b − 1)

but this is all for the same value of λ so b(b− 1) = t(t+1) so either b = t+1
which is ridiculous since this would make the bottom rung higher than the
top rung, or b = −t. so µ runs from −t to t in integer steps where λ = t(t+1).

The number of steps N needs to be an integer. So -t+N=t so t = N/2.

This tells us something MORE than our first way with polymonials. This
tells us µ can be an integer OR HALF INTEGER. Yet our polynomical
approach only gave us an integer. There is something about real orbital
angular momentum which forced integer values on us so we had

L2Ylm = l(l + 1)h̄2Ylm l = 0, 1, . . .

LzYlm = mh̄Ylm − l,−l + 1..., l − 1, l

But if all we had was the commuters, we could define some general angular
momentum which could have half integer values of µ.

9.3 General angular momentum: J

Any vector J is defined to be an angular momentum if its componets Jx, Jy, Jz

satisfy the commutation relations [Jx, Jy] = ih̄Jz, [Jy, Jz] = ih̄Jx and [Jz, Jx] =
ih̄Jy and have a total J2 = J2

x + J2
y + J2

z which commutes with all its com-
ponents so that [J2, Jx] = [J2, Ly] = [J2, Lz] = 0. Then there are common
eigenfunctions of J2 and Jz called fjmj

, which are defined to have eigenvalues

values j(j + 1)h̄2 and mjh̄, respectively. So J2fj,mj
= j(j + 1)h̄2fj,mj

and
Jzfj,mj

= mjh̄fj,mj

These also have ladder operators J± = Jx ± iJy, such that J+ raises mj by
unity, while J− lowers it by unity. so

JzJ+ = (mj + 1)h̄J+ JzJ− = (mj − 1)h̄J−
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this cannot go on indefinitely as we know that J2 = J2
x + J2

y + J2
z ≥ J2

z so
j(j + 1) ≥ m2

j Hence there is a top value of mj = mt and there is also a
bottom value mj = mb. since we are going up and down in integer steps
then mt − mb = N where N = 0, 1, 2..... J−(J+fj,mt

) = 0 implies j(j + 1) =
mt(mt + 1) and J+(J−fj,mb

) = 0 implies j(j + 1) = mb(mb − 1) which shows
that mb = −mt so mt = j and −j + N = j where N is an integer so 2j = N
so j = 0, 1/2, 1, 3/2...

J2fjmj
= j(j + 1)h̄2fjmj

j = 0, 1/2, 1, 3/2...

Jzfjmj
= jh̄fjmj

mj = −j,−j + 1,−j + 2...0....j − 1, j

A GENERAL angular momentum can have integer OR HALF INTEGER
values of j, with mj , running up to ±j

9.4 Spin

so we define S as an angular momentum spin operator, with S2 eigenvalues
s(s+1)h̄2 and Sz eigenvalues msh̄. THEIR EIGENFUNCTIONS ARE NOT
spherical harmonics! they are not functions of θφ at all.

every elementary particle has a specific and immutable value of s which is its
intrinsic spin. fermions have spin s = 1/2 so ms can take values ±1/2. this
is in sharp contrast to the orbital angular momentum l which can take any
allowed value l = 0...n− 1 and is NOT fixed - it can change as the system is
perturbed.

electrons are femions so they can exist in only one of two eigenstates of spin,
spin up ms = +1/2, eigenvector χ+ or spin down ms = −1/2, eigenvector
χ−.

there is good experimental evidence for this - the Stern-Gerlach experiment.
They took silver atoms - Z=47. This has a single outer electron in the n=5,
l=0, m=0 level. with l = 0 then the electron has zero angular momentum and
therefore produces no current loop so should not interact with an external
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magnetic field. Stern and Gerlack took their beam of silver atoms through
an inhomogeneous B field. The field separated the beam into two distinct
parts!! if the electron had an intrinsic magnetic dipole then it will experience
a force proportional to the field gradient since the two ”poles” will be subject
to different fields. this would give a continuous smear at the detectors if the
dipole could be oriented in any direction. so to split into two requires that
there are only two directions allowed!

lets see this in more detail:

For an electron moving in an orbit of radius r with speed v

A = πr2

I = −
ev

2πr

and

µl = IA = −
evr

2
= −

e

2me

mevr = −
e

2me

L (1)

where L is the orbital angular momentum of the electron. In vector form

µl = −
e

2me

L = −
µB

h̄
L (2)

where µB = eh̄/2me is called the Bohr magneton, and is a natural unit of
microscopic magnetic moment, with the value 9.27 × 10−24 J T−1 or 5.79 ×

10−5 eV T−1.

Therefore it is reasonable to identify −(µB/h̄)L as the quantum mechanical
magnetic moment operator associated with orbital angular momentum. It
follows that the operator for the z-component of the magnetic moment is

(µl)z = −
µB

h̄
Lz
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An ideal measurement of the quantity (µl)z must yield one of the eigenvalues
of the corresponding operator. Hence, for a hydrogen atom with orbital
angular momentum quantum number l, the possible values of the quantity
(µl)z are −mlµB, where ml is one of the numbers from −l and +l in steps of
unity.

Now consider a hydrogen atom in a z-directed magnetic field Bz. A classical
model would give the associated magnetic potential energy as

−(µl)zBz = mµbBz

In classical magnetism, a uniform magnetic field creates a torque, but no
translational force, on an object possessing a magnetic moment. However, a
translational force can be produced by the application of a spatially varying
field - as force is the derivative of potential F = −dV/dz so we might expect
the quantum mechanical force on a hydrogen atom to be

Fz = (µl)z

dBz

dz
(3)

where (µl)z is equal to one of the discrete values −mlµB.

but if we have the outer electron in the l = 0 state then m = 0 so there
should be no effect!

but the beam IS split into two in the Stern-Gerlach experiment, showing that
there IS a magnetic moment which is NOT associated with orbital angular
momentum, and can take 2 potential values rather than the continuum of
values you might expect with a randomly aligned spin dipole. This motivates
us to assicated a magnetic moment µs with the spin angular momentum S.
we’ll assume

µs = −gs

e

2me

S = −gs

µB

h̄
S (4)
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where gs is called the spin g-factor. so then the force is

Fz = (µs)z

∂Bz

∂z
= −gsmsµB

∂Bz

∂z
(5)

Now we know that two lines are seen in the experiment, which implies that
Fz has two possible values for each hydrogen atom. That in turn suggests
that ms can have two values. If we assume that the allowed values of ms must
range from −s to +s in steps of unity, in analogy with the relation between
ml and l in the orbital case, then we must take s = 1/2 and ms = ±1/2.
Since the spin is assumed to be an intrinsic property of the electron, we
take the picture to be valid for all electrons, and not just those in hydrogen
atoms. Because s = 1/2 we refer to the electron as a spin-1/2 particle
which can exist in the states ms = 1/2 or Sz = +h̄/2, called spin up, and
ms = −1/2 or Sz = −h̄/2, called spin down.

Using ms = ±1/2 and comparing with the force seen in experiment we find
gs = 2. So eq. 4 that

(µs)z = −gsmsµB = ∓µB (6)
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