
3 Time independent Schroedinger equation

The Schroedinger equation is
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This simplifies if V (x, t) = V (x) i.e. the potential remains constant with
time. Then the wavefunction is separable Ψ(x, t) = ψ(x)T (t). Put this into
the equation and:
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Divide by ψ(x)T (t)
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The LHS is a function only of x, while the RHS is a function only of t. the
only way these can be equal to each other is if NEITHER is a function of x
or t i.e. if this is equal to a constant. We’ll call this separation constant E
as in a moment we’ll see that it is!
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cf the standard derivative d(ect)/dt = cect so T (t) = e−iEt/h̄ on the other side
we have
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The time depenent Schroedinger equation is a partial differential equation
and by separation of variables we turned it into two ordinary differential
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equations, the time one was easy to solve as an exponential, the spatial one
becomes an Eigenvalue equation. i.e. of the type ˆA(x)f(x) = af(x) where
Â is an operator and a is a number. In other words, the operator acting
on a function returns the same function multiplied by a number. Ours is

ˆA(x)ψ(x) = Eψ(x) where H is teh hamiltonian operator.
so we can use the whole set of mathematical machinary to solve the time
independent schroedinger equation. and then we can completely specify the
time dependent behaviour by multiplying ψE by e−iEt/h̄. ψE(x) is termed
the time independent wavefunction and E is the enery eigenvalue.
all we have to do for a time independent potential is to specify V . then
we can solve the time independent Schroedinger equation to get ψE(x) -
where I’ve used the subscript E to describe the energy eigenfunction as there
are typically multiple solutions, each corresponding to a different energy E.
The full wavefunction for each eigenfunction, ΨE(x, t) is simply found by
multiplying ψE(x) by e−iEt/h̄ where the E is specific to the ψE .
The general solution to the time dependent Schroedinger equation is the
weighted sum of all of these separate wavefunctions.
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though of course this total wavefunction is NOT a solution of the time inde-
pendent Schroedinger equation, only each individual ΨE(x, t) is.

3.1 Bound particles and standing waves

We are ultimately interested in the energy levels of hydrogen, so we are most
interested in what happens with bound electrons. In these, the electron
wave is trapped by a time independent potential. First we are going to look
at this in a quite intuitive way. Then we will solve the time independent
Schroedinger equation for it.
We can trap the free electron wave in the range 0-L, where now we are
thinking of L ∼ λ by putting an infinite potential at these points.
Our wave moving from left to right in free space is Ψ = Aei(kx−ωt). But now
it reflects off the other side of the potential, so there is another wave moving
from right to left with Ψ = −Aei(−kx−ωt), and the two will interfere.
Our general wave function is the sum

Ψ = Aei(kx−ωt) − Aei(−kx−ωt)) = e−iωtA(eikx − e−ikx)
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= e−iωtA[cos(kx) + i sin(kx) − cos(−kx) − i sin(−kx)]

= 2Ai sin(kx) at t = 0

V (0) = V (L) = ∞ so there is zero probability to find the electron at these
points. Ψ(0) = 0 = 2Ai sin(0) = 0 which is fine. But we also have Ψ(L) = 0
then 2iA sin(kL) = 0 so k = nπ/L.
What the potential has done is take a travelling wave which could have
any energy, reflect it so it interfers. Only for certain wavelengths which
fit exactly into the potential can this interference be constructive and we
get a STANDING WAVE. Otherwise we get nothing. The potential has
fixed width, so there are only fixed wavelengths which fit into the potential,
denoted by k = 2π/λ = nπ/L i.e. λ = L/2n. And each of these has its own

energy since En = k2h̄2/2m = h̄2n2π2

2mL2 = E1n
2 where E1 = h̄2π2

2mL2 is the ground
state
But this means that if a system is in one of its energy eigenfunctions, we get
a DEFINITE answer for energy. which feels a bit weird as this is quantum
mechanics, which is typically not definite about anything. But when you
trap a wave by a potential, then reflections set up interference which mean
that the matter wave which is the electron can only have one of a set of
specfic energies - energy levels in Hydrogen (though its a fair way off)
and if its in ones of these energy eigenstates, then this automatically means
that all expectation values of any quantity are time independent

< A >=
∫

Ψ∗AΨdx =
∫

eiEt/h̄ψ∗Ae−iEt/h̄ψdx =
∫

ψ∗Aψdx

And expectation values of the hamiltonian give a definite answer!! < E >=<
H >= E.

3.2 Infinite square well energy eigenfunctions

V = 0 for 0 < x < L and ∞ elsewhere. so in the well we have
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this is simply SHM d2ψ/dx2 = −k2ψ for k =
√

2mE/h̄. So we know this
has solution ψ(x) = A sin kx+B cos kx. Boundary conditions as before and
ψ(0) means ψ(0) = A sin 0 + B cos 0 = B = 0. The ψ(L) = 0 = A sin kx so
k = nπ/L and it is quantised in n = 1, 2 . . .. ψ(x) = A sin(nπx/L) and A is

set by the normalisation condition
∫

ψ∗ψdx = 1 giving A =
√

2/L.
These solutions are quantised in shape by quantum number n, and are quan-
tised in energy k = nπ/L =

√
2mE/h̄ hence En = n2π2h̄2/2mL2 = n2E1.

And it makes most sense to denote each different solution by n rather than
by E because n is just a counter that goes from 1, 2, 3 . . ..

Then the spatial part of the energy eigenfunctions are ψn(x) =
√

2/L sin(nπx/L).
we can make these into the full energy eigenfunctions by
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so if the system is in a single energy eigenstate then all expectation values
are time independnent
e.g. we saw an example of this already from our wavefunction in an infinite
potential from 0 to L, but lets do t

Ψ(x, t) = e−iωt
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formally, for any eigenfunction, the probability of finding an electron within
dx of x is

P (x, t)dx = Ψ∗(x, t)Ψ(x, t)dx = eiEt/h̄ψ∗(x)e−iEt/h̄ψ(x) = ψ∗(x)ψ(x)dx

i.e. is not time dependent.
And since the time terms cancel to unity, if ψn is normalised, then Ψn =
ψne

−iEnt/h̄ is automatically normalised too.
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But physically, the important point here is that the probability distribution
for the electron is not dependent on time - these are stationary states. Again,
here is another moment of brilliance of QM. The big issue with electrons
in atoms is why they did not radiate - circular motion of a point charge
in an ’orbit’ picture means that the charge density is accelerating, so the
electron should radiate, lose energy and atoms shouldn’t exist! Instead in
QM, the idea is that allowed energy levels are STANDING waves, so they
are stationary states. The charge distribution is not moving, so the electrons
don’t radiate.
the fully general solution to the time dependent Schroedinger equation is

Ψ(x, t) =
∑

n
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∑
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where we choose the cn so as to be able to normalise our total wave function
so that

∫

Ψ∗(x, t)Ψ(x, t)dx = 1 as required.

5


