
1 Basics - in 1D

1.1 Time dependent Sch. equation and operators

In the heart of classical mechanics in 1D we have Newton F = ma. For
conservative forces F = m ∂2x

∂2t2
= −∂V

∂x
. we can get x(t) if we know the

potential and some boundary conditions. All other dynamical quantities
follow eg v(t) = dx/dt, p = mv, KE= mv2/2 = p2/2m etc

In quantum mechanics we also need the potential but we look for the wave
function Ψ(x, t) as wave particle duality means that particles are ’wavy’.
We can’t know position and momentum simultaneously ∆x∆p ≥ h̄/2. We
can’t get velocity, etc from dx/dt as there is no well defined x(t). Waves
in free space have Ψ = Nei(kx−ωt) (left to right), and p = h̄k. ∂Ψ/∂x =
Nikei(kx−ωt) = ikΨ. This gets us to operators p̂Ψ = h̄

i
∂Ψ/∂x i.e. p̂ =

−ih̄∂Ψ/∂x. Then we can get KE=p2/2m = −h̄2/2m∂2/∂x2. Total energy
(Hamiltonian) Ĥ = KE + PE = p2/2m + V . But for waves we also know
that total energy E = h̄ω. ∂Ψ/∂t = −iωΨ hence E = h̄/(−i)∂/∂t =
ih̄∂/∂t Hence we get Schroedingers equation in 1D which we solve for Ψ
from boundary conditions

EΨ = ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ VΨ = ĤΨ where Ĥ = − h̄2

2m

∂2

∂x2
+ V (1)

Ψ(x, t) now has a probablilisic interpretation - probability of finding par-
ticle between a and b at time t is

∫ b
a |Ψ(x, t)|2dx. Thus it has to normalise to

unity over all space
∫ +∞

−∞
|Ψ(x, t)|2dx = 1. |Ψ(x, t)|2 is the probability density.

1.2 Observables

We now get all other dynamical quantities, A, by writing it in operator form
Â - replace any quantity involving p by p̂. Then the expectation value from
any measurement is < A >=

∫
Ψ∗ÂΨdx. < x >=

∫
Ψ∗xΨdx, < p >=

∫
Ψ∗.(−ih̄∂Ψ/∂x)dx...
Anything we can observe HAS to be real ie< A >=< A >∗ so

∫
Ψ∗(ÂΨ)dx =

∫
ΨÂ∗Ψ∗dx =

∫
(ÂΨ)∗Ψdx Any operator which has this property is termed

Hermitian. Only Hermitian operators can represent observables. The Hamil-
tonian is forced to be Hermitian by virtue of conservation of probability! so
energy is always a real observable.
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1.3 Time independent Schroedinger equation

We can split the time dependent sch equation up into a time and spatial
part IF the potential is NOT time dependent. So for V (x, t) = V (x) we get
Ψ(x, t) = ψ(x)T (t) where T (t) = e−iEt/h̄ and ψ(x) satisfies

Eψ = − h̄2

2m

∂2ψ

∂x2
+ V ψ (2)

So we solve this EIGENVALUE equation (operator acting on a function
returns a function multiplied by a number) to get ψ(x).

If the particle is bound then its a standing wave. There are only so many
ways to fit this into the potential so the solutions are quantised. This gives a
series of possible solutions (eigenfunctions) ψn(x) all of which satisfy the time
independent Schroedinger equation, each with their own quantised eigenen-
ergy En. We normalise each one so that

∫
ψn(x)∗ψn(x)dx = 1 and then these

form an orthonormal basis so
∫
ψn(x)∗ψm(x)dx = δnm i.e. 1 when n = m (as

we normalised it to itself) and 0 otherwise. These form a basis set, so any
arbitrary wavefunction ψ(x) can be decomposed into a sum of eigenfuctions
so ψ(x) =

∑
n cnψn(x) where cn =

∫
ψ∗

nψ(x)dx. since the wavefunctions are
normalised than

∑
n c

2
n = 1 When we measure the system we force it to pick

ONE of the possible eigenfunctions, ψn(x). The probability that it picks ψn

is c2n for a normalised wavefunction. So there is probability c2n to measure
energy En. This is not the same as the expectation value < E >=

∑
n c

2
nEn

we saw examples of these eigenfunctions - infinite square well potential
(0 < x < L: ψn(x) ∝ sinnπx/L n = 1, 2 . . .), harmonic potential 1

2
κx2

ψn(x) ∝ e−α2x2/2Hn(αx), n = 0, 1, 2 . . . where Hn are Hermite polynomials
and n = 0 means there is a zero point energy).

The full time dependent solution is Ψ(x, t) =
∑

n cnψn(x)e−iEnt/h̄.

1.4 Commutators

We can only observe quantities simultaneously to arbitrary accuracy if they
commute ie the commutator [Â, B̂] = ÂB̂ − B̂Â = 0 eg [x, px]ψ = x(pxψ) −
px(xψ) = ih̄! The measurement of x disturbs the wavefunction for the mea-
surement of p. Alternatively, measuring p disturbs the wavefunction for
measuring x. [Â, B̂] = 0 means that Â, B̂ share common eigenfunctions f , so
Af = af , and Bf = bf and measuring one does not disturb the wavefunction
for the other.
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2 Schroedinger in 3D

ih̄
∂Ψ

∂dt
= − h̄2

2m
∇2Ψ + VΨ = EΨ

Normalisation is now over the entire volume so that
∫
ψ∗ψdV = 1

2.1 Cartesians

∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. If the potential is separable so V (x, y, z) =
Vx(x)Vy(y)Vz(z) then we just have 3 time independent Schroedinger equa-
tions to solve for the 3 coordinates, for ψnx,ny,nz(x, y, z) = ψnx(x)ψny(y)ψnz(z)
where each direction has its own quantum number eg infinite square well po-
tential, and 3D harmonic potential. Volume integral is

∫ ∫ ∫
ψ∗ψdxdydz.

In 2D or 3D there is much more room. and any symmetry comes at a price
of introducing a degeneracy - same energy but different wavefunction!

2.2 Spherical polars

∇2 has much more difficult form. But the electrostatic potential V (x, y, z) =
−Ze/4πǫ0

√
x2 + y2 + z2 is not separable in cartesian coordinates but is in

spherical polars V (r) = −Ze/4πǫ0r. For ANY spherically symmetric radial
potential where V (x, y, z) = V (r) then the Schroedinger equation separates
into 3 separate equations in spherical polar coordinates, one for each of the
r, θ, φ coordinates, with the potential ONLY appearing in the r equation,
not in the θ, φ equations due to spherical symmetry. so the wavefunction is
ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) where Θ(θ)Φ(φ) = Y (θ, φ) are the same for any
potential and are the simultaneous eigenfunctions of the angular momentum
operators L2 and Lz . L2Ylm = l(l + 1)h̄2Ylm and LzYlm = mh̄Ylm where
m = −l,−l + 1..0...l − 1, l. We can measure L2 and Lz simultaneously
to infinite accuracy (they commute, share eigenfunctions) but NOT all the
individual components as [Lx, Ly] = ih̄Lz.

When we solve for Hydrogen we get a further condition that l = 0...n− 1
which is SPECIFIC to a 1/r potential.

Volume integral is
∫ 2π
0

∫ π
0

∫
∞

0 ψ∗ψr2 sin θdrdθdφ.
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